Question
Question: If \[\alpha \] , \[\beta \ne 0\] , and \[f\left( n \right) = {\alpha ^n} + {\beta ^n}\] and \[\left|...
If α , β=0 , and f(n)=αn+βn and \left| {\begin{array}{*{20}{c}}
3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)} \\\
{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)} \\\
{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}
\end{array}} \right| = K{\left( {1 - \alpha } \right)^2}{\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2} , then K is equal to
A αβ
B αβ1
C 1
D -1
Solution
Hint : In linear algebra, determinant is a special number that can be determined from a square matrix. To solve the given functions, we need to consider the LHS part, in which to find the value of K we get LHS = RHS and the value of K. Hence, using matrix elementary functions simplify the given functions in the determinant to get the value of K.
Complete step-by-step answer :
Let us write the given data,