Solveeit Logo

Question

Question: If $\alpha, \beta, \gamma, \sigma$ are the roots of the equation $x^4 + 4x^3 - 6x^2 + 7x - 9 = 0$ t...

If α,β,γ,σ\alpha, \beta, \gamma, \sigma are the roots of the equation

x4+4x36x2+7x9=0x^4 + 4x^3 - 6x^2 + 7x - 9 = 0 then the value of

(1+α2)(1+β2)(1+γ2)(1+σ2)(1+\alpha^2)(1+\beta^2)(1+\gamma^2)(1+\sigma^2) is

Answer

13

Explanation

Solution

The given polynomial equation is P(x)=x4+4x36x2+7x9=0P(x) = x^4 + 4x^3 - 6x^2 + 7x - 9 = 0. Let its roots be α,β,γ,σ\alpha, \beta, \gamma, \sigma.

Since the leading coefficient of the polynomial is 1, we can express P(x)P(x) in terms of its roots as: P(x)=(xα)(xβ)(xγ)(xσ)P(x) = (x-\alpha)(x-\beta)(x-\gamma)(x-\sigma).

We need to find the value of the product (1+α2)(1+β2)(1+γ2)(1+σ2)(1+\alpha^2)(1+\beta^2)(1+\gamma^2)(1+\sigma^2). We can rewrite each term (1+r2)(1+r^2) as (ri)(r+i)(r-i)(r+i), where i=1i = \sqrt{-1}. So, the expression becomes:

(1+α2)(1+β2)(1+γ2)(1+σ2)=(αi)(α+i)(βi)(β+i)(γi)(γ+i)(σi)(σ+i)(1+\alpha^2)(1+\beta^2)(1+\gamma^2)(1+\sigma^2) = (\alpha-i)(\alpha+i)(\beta-i)(\beta+i)(\gamma-i)(\gamma+i)(\sigma-i)(\sigma+i)

Rearrange the terms by grouping those with (ri)(r-i) and (r+i)(r+i):

=[(αi)(βi)(γi)(σi)]×[(α+i)(β+i)(γ+i)(σ+i)]= [(\alpha-i)(\beta-i)(\gamma-i)(\sigma-i)] \times [(\alpha+i)(\beta+i)(\gamma+i)(\sigma+i)]

Now, let's relate these products to the polynomial P(x)P(x):

  1. Consider P(i)P(i):

P(i)=(iα)(iβ)(iγ)(iσ)P(i) = (i-\alpha)(i-\beta)(i-\gamma)(i-\sigma).

We can factor out (1)(-1) from each term in the first bracket of our expression:

(αi)(βi)(γi)(σi)=(1)4(iα)(iβ)(iγ)(iσ)=P(i)(\alpha-i)(\beta-i)(\gamma-i)(\sigma-i) = (-1)^4 (i-\alpha)(i-\beta)(i-\gamma)(i-\sigma) = P(i).

  1. Consider P(i)P(-i):

P(i)=(iα)(iβ)(iγ)(iσ)P(-i) = (-i-\alpha)(-i-\beta)(-i-\gamma)(-i-\sigma).

We can factor out (1)(-1) from each term in the second bracket of our expression:

(α+i)(β+i)(γ+i)(σ+i)=(1)4(αi)(βi)(γi)(σi)=P(i)(\alpha+i)(\beta+i)(\gamma+i)(\sigma+i) = (-1)^4 (-\alpha-i)(-\beta-i)(-\gamma-i)(-\sigma-i) = P(-i).

Therefore, the value we need to find is P(i)×P(i)P(i) \times P(-i).

First, calculate P(i)P(i):

P(i)=i4+4i36i2+7i9P(i) = i^4 + 4i^3 - 6i^2 + 7i - 9

Using the properties of ii: i2=1i^2 = -1, i3=ii^3 = -i, i4=1i^4 = 1.

P(i)=(1)+4(i)6(1)+7i9P(i) = (1) + 4(-i) - 6(-1) + 7i - 9

P(i)=14i+6+7i9P(i) = 1 - 4i + 6 + 7i - 9

P(i)=(1+69)+(4+7)iP(i) = (1+6-9) + (-4+7)i

P(i)=2+3iP(i) = -2 + 3i.

Next, calculate P(i)P(-i):

P(i)=(i)4+4(i)36(i)2+7(i)9P(-i) = (-i)^4 + 4(-i)^3 - 6(-i)^2 + 7(-i) - 9

P(i)=(1)+4(i)6(1)7i9P(-i) = (1) + 4(i) - 6(-1) - 7i - 9

P(i)=1+4i+67i9P(-i) = 1 + 4i + 6 - 7i - 9

P(i)=(1+69)+(47)iP(-i) = (1+6-9) + (4-7)i

P(i)=23iP(-i) = -2 - 3i.

Finally, multiply P(i)P(i) and P(i)P(-i):

(1+α2)(1+β2)(1+γ2)(1+σ2)=P(i)×P(i)(1+\alpha^2)(1+\beta^2)(1+\gamma^2)(1+\sigma^2) = P(i) \times P(-i)

=(2+3i)(23i)= (-2 + 3i)(-2 - 3i)

This is in the form (a+bi)(abi)=a2+b2(a+bi)(a-bi) = a^2 + b^2.

=(2)2+(3)2= (-2)^2 + (3)^2

=4+9= 4 + 9

=13= 13.