Question
Question: If \( \alpha +\beta +\gamma =\pi \) , then \( \cos \alpha \sin \left( \beta -\gamma \right)+\cos \be...
If α+β+γ=π , then cosαsin(β−γ)+cosβsin(γ−α)+cosγsin(α−β)
A. 0
B. 21
C. 1
D. 4cosαcosβcosγ
Explanation
Solution
Hint : We first make the changes for the angles where α=π−(β+γ) , β=π−(α+γ) , γ=π−(α+β) . We take the cos ratio for all three angles. We replace those values in the main equation. We use the sum of angles theorem 2cosAsinB=sin(A+B)−sin(A−B) . We get the solution.
Complete step-by-step answer :
The given condition is α+β+γ=π . We get α=π−(β+γ) , β=π−(α+γ) , γ=π−(α+β)
Applying ratio cos on three conditions, we get
cosα=cos[π−(β+γ)]=−cos(β+γ)
cosβ=cos[π−(α+γ)]=−cos(α+γ)
cosγ=cos[π−(α+β)]=−cos(α+β)
The main equation becomes