Solveeit Logo

Question

Question: If $\alpha, \beta, \gamma$ be the roots of $2x^3 + x^2 + x + 1 = 0$, find the value of: $(\frac{1}{...

If α,β,γ\alpha, \beta, \gamma be the roots of 2x3+x2+x+1=02x^3 + x^2 + x + 1 = 0, find the value of:

(1β3+1γ31α3)(1γ3+1α31β3)(1α3+1β31γ3)(\frac{1}{\beta^3} + \frac{1}{\gamma^3} - \frac{1}{\alpha^3})(\frac{1}{\gamma^3} + \frac{1}{\alpha^3} - \frac{1}{\beta^3})(\frac{1}{\alpha^3} + \frac{1}{\beta^3} - \frac{1}{\gamma^3})

A

4

B

8

C

12

D

16

Answer

16

Explanation

Solution

Here's how to solve this problem:

  1. Define the original cubic equation 2x3+x2+x+1=02x^3 + x^2 + x + 1 = 0 with roots α,β,γ\alpha, \beta, \gamma.

  2. Form the reciprocal equation y3+y2+y+2=0y^3 + y^2 + y + 2 = 0 by substituting x=1/yx=1/y. Its roots are A=1/α,B=1/β,C=1/γA=1/\alpha, B=1/\beta, C=1/\gamma.

  3. Apply Vieta's formulas to the reciprocal equation:

    • A+B+C=1A+B+C = -1
    • AB+BC+CA=1AB+BC+CA = 1
    • ABC=2ABC = -2
  4. Rewrite the given expression in terms of A,B,CA, B, C: E=(B3+C3A3)(C3+A3B3)(A3+B3C3)E = (B^3 + C^3 - A^3)(C^3 + A^3 - B^3)(A^3 + B^3 - C^3).

  5. Since AA is a root of y3+y2+y+2=0y^3 + y^2 + y + 2 = 0, then A3=A2A2A^3 = -A^2 - A - 2. Similarly for BB and CC.

  6. Calculate A3+B3+C3=(A2+B2+C2)(A+B+C)6A^3+B^3+C^3 = -(A^2+B^2+C^2) - (A+B+C) - 6.

    • A2+B2+C2=(A+B+C)22(AB+BC+CA)=(1)22(1)=1A^2+B^2+C^2 = (A+B+C)^2 - 2(AB+BC+CA) = (-1)^2 - 2(1) = -1.

    • Therefore, A3+B3+C3=(1)(1)6=4A^3+B^3+C^3 = -(-1) - (-1) - 6 = -4.

  7. Let S3=A3+B3+C3=4S_3 = A^3+B^3+C^3 = -4. The expression becomes (S32A3)(S32B3)(S32C3)=(42A3)(42B3)(42C3)=8(2+A3)(2+B3)(2+C3)(S_3-2A^3)(S_3-2B^3)(S_3-2C^3) = (-4-2A^3)(-4-2B^3)(-4-2C^3) = -8(2+A^3)(2+B^3)(2+C^3).

  8. Substitute 2+A3=2+(A2A2)=A(A+1)2+A^3 = 2 + (-A^2-A-2) = -A(A+1). Similarly for BB and CC.

  9. The expression simplifies to 8[A(A+1)][B(B+1)][C(C+1)]=8ABC(A+1)(B+1)(C+1)-8 [-A(A+1)] [-B(B+1)] [-C(C+1)] = 8 ABC (A+1)(B+1)(C+1).

  10. Use P(y)=y3+y2+y+2=(yA)(yB)(yC)P(y) = y^3 + y^2 + y + 2 = (y-A)(y-B)(y-C). Evaluate P(1)=(1A)(1B)(1C)=(A+1)(B+1)(C+1)P(-1) = (-1-A)(-1-B)(-1-C) = -(A+1)(B+1)(C+1).

  11. P(1)=(1)3+(1)2+(1)+2=1P(-1) = (-1)^3 + (-1)^2 + (-1) + 2 = 1. So, (A+1)(B+1)(C+1)=1    (A+1)(B+1)(C+1)=1-(A+1)(B+1)(C+1) = 1 \implies (A+1)(B+1)(C+1) = -1.

  12. Substitute ABC=2ABC = -2 and (A+1)(B+1)(C+1)=1(A+1)(B+1)(C+1) = -1 into the simplified expression: 8(2)(1)=168(-2)(-1) = 16.