Solveeit Logo

Question

Question: If \(\alpha ,\beta ,\gamma \) are three real numbers and \(A = \left[ {\begin{array}{*{20}{c}} 1...

If α,β,γ\alpha ,\beta ,\gamma are three real numbers and A = \left[ {\begin{array}{*{20}{c}} 1&{\cos \left( {\alpha - \beta } \right)}&{\cos \left( {\alpha - \gamma } \right)} \\\ {\cos \left( {\beta - \alpha } \right)}&1&{\cos \left( {\beta - \gamma } \right)} \\\ {\cos \left( {\gamma - \alpha } \right)}&{\cos \left( {\gamma - \beta } \right)}&1 \end{array}} \right], then which of the following is not true.
a. AA is singular
b. AA is symmetric
c. AA is orthogonal
d. AA is not invertible

Explanation

Solution

We will rearrange the elements of the matrix by using the property cos(x)=cosx\cos \left( { - x} \right) = \cos x. Then, compare the elements of the matrix with that of a symmetric matrix. Here, we will see if a12=a21{a_{12}} = {a_{21}}, a23=a32{a_{23}} = {a_{32}} and a13=a31{a_{13}} = {a_{31}}. If all such elements are equal, then the matrix is a symmetric matrix.

Complete step by step solution:
We are given a matrix A = \left[ {\begin{array}{*{20}{c}} 1&{\cos \left( {\alpha - \beta } \right)}&{\cos \left( {\alpha - \gamma } \right)} \\\ {\cos \left( {\beta - \alpha } \right)}&1&{\cos \left( {\beta - \gamma } \right)} \\\ {\cos \left( {\gamma - \alpha } \right)}&{\cos \left( {\gamma - \beta } \right)}&1 \end{array}} \right]
Here, we know that cos(x)=cosx\cos \left( { - x} \right) = \cos x
We can write the elements of the matrix as

1&{\cos \left( { - \left( {\beta - \alpha } \right)} \right)}&{\cos \left( { - \left( {\gamma - \alpha } \right)} \right)} \\\ {\cos \left( {\beta - \alpha } \right)}&1&{\cos \left( { - \left( {\gamma - \beta } \right)} \right)} \\\ {\cos \left( {\gamma - \alpha } \right)}&{\cos \left( {\gamma - \beta } \right)}&1 \end{array}} \right]$$ Which is equal to $$A = \left[ {\begin{array}{*{20}{c}} 1&{\cos \left( {\beta - \alpha } \right)}&{\cos \left( {\gamma - \alpha } \right)} \\\ {\cos \left( {\beta - \alpha } \right)}&1&{\cos \left( {\gamma - \beta } \right)} \\\ {\cos \left( {\gamma - \alpha } \right)}&{\cos \left( {\gamma - \beta } \right)}&1 \end{array}} \right]$$ Also, it is known that the matrix is symmetric when $\left[ {{a_{ij}}} \right] = \left[ {{a_{ji}}} \right]$ Then, we can say that the given matrix is a symmetric matrix. **Hence, option b is correct.** **Note:** A matrix is said to be invertible if the determinant is non zero and the matrix is said to be singular if the determinant is zero. A matrix is said to be symmetric matrix when $\left[ {{a_{ij}}} \right] = \left[ {{a_{ji}}} \right]$ for every element of the matrix.