Question
Question: If $\alpha, \beta, \gamma$ are the roots of $x^3 + ax^2 + b = 0$, then the value of $\begin{vmatrix}...
If α,β,γ are the roots of x3+ax2+b=0, then the value of αβγβγαγαβ is equal to

-a^3
a^3 - ab
a^3
a^2 - 3b
a^3
Solution
The given cubic equation is x3+ax2+b=0. Let the roots of this equation be α,β,γ. Comparing this equation with the standard cubic equation Ax3+Bx2+Cx+D=0, we have A=1,B=a,C=0,D=b.
Using Vieta's formulas:
- Sum of the roots: α+β+γ=−AB=−1a=−a
- Sum of the products of the roots taken two at a time: αβ+βγ+γα=AC=10=0
- Product of the roots: αβγ=−AD=−1b=−b
We need to evaluate the determinant:
D=αβγβγαγαβ
We can evaluate this determinant using column operations. Add the second and third columns to the first column (C1→C1+C2+C3):
D=α+β+γβ+γ+αγ+α+ββγαγαβ
Now, take out the common factor (α+β+γ) from the first column:
D=(α+β+γ)111βγαγαβ
Expand the 3×3 determinant:
D=(α+β+γ)[1(γβ−αα)−β(1⋅β−1⋅α)+γ(1⋅α−1⋅γ)]
D=(α+β+γ)[βγ−α2−β2+αβ+αγ−γ2]
D=(α+β+γ)[−(α2+β2+γ2−αβ−βγ−γα)]
Now, we use the algebraic identity:
α2+β2+γ2−αβ−βγ−γα=(α+β+γ)2−3(αβ+βγ+γα)
Substitute this into the expression for D:
D=(α+β+γ)[−((α+β+γ)2−3(αβ+βγ+γα))]
Now, substitute the values from Vieta's formulas:
α+β+γ=−a
αβ+βγ+γα=0
D=(−a)[−((−a)2−3(0))]
D=(−a)[−(a2−0)]
D=(−a)[−a2]
D=a3
The value of the determinant is a3.