Solveeit Logo

Question

Mathematics Question on binomial expansion formula

If α,β,γ\alpha, \beta, \gamma are the roots of x3+4x+1=0x^{3}+4 x+1=0, then the equation whose roots are α2β+γ,β2γ+α,γ2α+β\frac{\alpha^{2}}{\beta+\gamma}, \frac{\beta^{2}}{\gamma+\alpha},\,\frac{\gamma^{2}}{\alpha+\beta} is

A

x34x1=0x^{3}-4 x-1=0

B

x34x+1=0x^{3}-4 x+1=0

C

x3+4x1=0x^{3}+4 x-1=0

D

x3+4x+1=0x^{3}+4 x+1=0

Answer

x3+4x1=0x^{3}+4 x-1=0

Explanation

Solution

Given, α,β\alpha, \beta and γ\gamma are the roots of
x3+4x+1=0x^{3}+4 x+1=0
α+β+γ=0,αβ+βγ+γα=4,αβγ=1\alpha+\beta+\gamma=0, \alpha \beta+\beta \gamma+\gamma \alpha=4, \alpha \beta \gamma=-1
Now, α2β+γ+β2γ+α+γ2α+β=α2α+β2β+γ2γ\frac{\alpha^{2}}{\beta+\gamma}+\frac{\beta^{2}}{\gamma+\alpha}+\frac{\gamma^{2}}{\alpha+\beta}=\frac{\alpha^{2}}{-\alpha}+\frac{\beta^{2}}{-\beta}+\frac{\gamma^{2}}{-\gamma}
=(α+β+γ)=0=-(\alpha+\beta+\gamma)=0
α2β2(β+γ)(γ+α)+β2γ2(γ+α)(α+β)+γ2α2(β+γ)(α+β)\frac{\alpha^{2} \beta^{2}}{(\beta+\gamma)(\gamma+\alpha)}+\frac{\beta^{2} \gamma^{2}}{(\gamma+\alpha)(\alpha+\beta)}+\frac{\gamma^{2} \alpha^{2}}{(\beta+\gamma)(\alpha+\beta)}
=αβ+βγ+γα=4=\alpha \beta+\beta \gamma+\gamma \alpha =4
and α2β2γ2(β+γ)(γ+α)(α+β)=αβγ=1\frac{\alpha^{2} \beta^{2} \gamma^{2}}{(\beta+\gamma)(\gamma+\alpha)(\alpha+\beta)}=-\alpha \beta \gamma=1
(α+β+γ=0)(\because \alpha+\beta+\gamma=0)
\therefore Required equation is
x3+4x1=0x^{3}+ 4 x-1=0