Question
Mathematics Question on Quadratic Equations
If α,β,γ are the roots of x3−6x2+11x−6=0 , then the equation having the roots α2+β2+γ2 and γ2+α2 is
A
x3−28x2+245x−650=0
B
x3−28x2+245x+650=0
C
x3+28x2−245x−650=0
D
x3+28x2+245x−650=0
Answer
x3−28x2+245x−650=0
Explanation
Solution
x3−6x2+11x−6=0…(i)
⇒(x−1)(x−2)(x−3)=0
⇒x=1,2,3
∵α,β,γ are the roots of the E(i), so
α=1,β=2,γ=3
Therefore, α2+β2=(1)2+(2)2=5=α′ (say)
β2+γ2=(2)2+(3)2=13=β′( say )
and γ2+α2=(3)2+1=10=γ′( say )
Equation of the having the roots α′,β′ and γ′ ,
x3−(α′+β′+γ′)x2+(α′β′+β′γ′+γ′α′)x
−α′β′γ′=0
⇒x3−(5+13+10)x2+(5×13+13×10+10×5)x
−5×13×10=0
⇒x3−28x2+245x−650=0