Solveeit Logo

Question

Question: If $\alpha, \beta, \gamma$ are the roots of the equation $$x^3 + px^2 + qx + r = 0,$$ then $$(\al...

If α,β,γ\alpha, \beta, \gamma are the roots of the equation

x3+px2+qx+r=0,x^3 + px^2 + qx + r = 0,

then

(α+β)(β+γ)(γ+α)=?(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) = ?

Answer

r - pq

Explanation

Solution

The given equation is x3+px2+qx+r=0x^3 + px^2 + qx + r = 0.
Let α,β,γ\alpha, \beta, \gamma be the roots of this equation.
According to Vieta's formulas:

  1. Sum of the roots: α+β+γ=p\alpha + \beta + \gamma = -p
  2. Sum of the products of the roots taken two at a time: αβ+βγ+γα=q\alpha\beta + \beta\gamma + \gamma\alpha = q
  3. Product of the roots: αβγ=r\alpha\beta\gamma = -r

We need to find the value of the expression (α+β)(β+γ)(γ+α)(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha).

From Vieta's formula (1), we can express each term in the product:
α+β=pγ\alpha + \beta = -p - \gamma
β+γ=pα\beta + \gamma = -p - \alpha
γ+α=pβ\gamma + \alpha = -p - \beta

Substitute these into the expression:
(α+β)(β+γ)(γ+α)=(pγ)(pα)(pβ)(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) = (-p - \gamma)(-p - \alpha)(-p - \beta)
Factor out 1-1 from each term:
=(1)(p+γ)(1)(p+α)(1)(p+β)= (-1)(p + \gamma) \cdot (-1)(p + \alpha) \cdot (-1)(p + \beta)
=(1)3(p+α)(p+β)(p+γ)= (-1)^3 (p + \alpha)(p + \beta)(p + \gamma)
=(p+α)(p+β)(p+γ)= -(p + \alpha)(p + \beta)(p + \gamma)

Alternatively, let P(x)=x3+px2+qx+rP(x) = x^3 + px^2 + qx + r.
Since α,β,γ\alpha, \beta, \gamma are the roots of P(x)=0P(x) = 0, we can write P(x)P(x) in factored form as:
P(x)=(xα)(xβ)(xγ)P(x) = (x - \alpha)(x - \beta)(x - \gamma)

Now, consider the expression we want to evaluate:
(α+β)(β+γ)(γ+α)(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)
Using α+β=pγ\alpha + \beta = -p - \gamma, β+γ=pα\beta + \gamma = -p - \alpha, γ+α=pβ\gamma + \alpha = -p - \beta:
The expression becomes (pγ)(pα)(pβ)(-p - \gamma)(-p - \alpha)(-p - \beta).
This is exactly P(p)P(-p) evaluated from the factored form:
P(p)=(pα)(pβ)(pγ)P(-p) = (-p - \alpha)(-p - \beta)(-p - \gamma)

Now, substitute x=px = -p into the original polynomial P(x)=x3+px2+qx+rP(x) = x^3 + px^2 + qx + r:
P(p)=(p)3+p(p)2+q(p)+rP(-p) = (-p)^3 + p(-p)^2 + q(-p) + r
P(p)=p3+p(p2)pq+rP(-p) = -p^3 + p(p^2) - pq + r
P(p)=p3+p3pq+rP(-p) = -p^3 + p^3 - pq + r
P(p)=rpqP(-p) = r - pq

Thus, (α+β)(β+γ)(γ+α)=rpq(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) = r - pq.