Question
Question: If $\alpha, \beta, \gamma$ are the roots of the equation $2x^3 - 5x^2 + 4x - 3 = 0$, then $\sum \alp...
If α,β,γ are the roots of the equation 2x3−5x2+4x−3=0, then ∑αβ(α+β)

Answer
1/2
Explanation
Solution
Given the cubic equation
2x3−5x2+4x−3=0,with roots α,β,γ, by Vieta’s formulas we have:
α+β+γ=25,αβ+βγ+γα=24=2,αβγ=23.We need to evaluate
∑αβ(α+β)=αβ(α+β)+βγ(β+γ)+γα(γ+α).Notice that:
αβ(α+β)=α2β+αβ2,so the sum becomes:
α2β+αβ2+β2γ+βγ2+γ2α+γα2.This symmetric sum can be directly expressed in terms of the elementary symmetric sums by the formula:
α2β+αβ2+β2γ+βγ2+γ2α+γα2=(α+β+γ)(αβ+βγ+γα)−3αβγ.Substitute the values:
∑αβ(α+β)=(25)(2)−3(23)=5−29=210−9=21.