Question
Question: If $\alpha, \beta, \gamma$ are the roots of the equation $4x^3 - 3x^2 + 2x - 1 = 0$, then $\alpha^3 ...
If α,β,γ are the roots of the equation 4x3−3x2+2x−1=0, then α3+β3+γ3=

Answer
3/64
Explanation
Solution
Given the cubic equation:
4x3−3x2+2x−1=0
Divide by 4 to obtain a monic polynomial:
x3−43x2+21x−41=0
Let the roots be α, β, γ. By Vieta's formulas, we have:
α+β+γ=43,αβ+βγ+γα=21,αβγ=41
Use the identity for the sum of cubes:
α3+β3+γ3=(α+β+γ)3−3(α+β+γ)(αβ+βγ+γα)+3αβγ
Substitute the values:
α3+β3+γ3=(43)3−3(43)(21)+3(41)
Calculate each term:
(43)3=6427,3(43)(21)=89=6472,3(41)=43=6448
Thus,
α3+β3+γ3=6427−6472+6448=6427−72+48=643