Question
Question: If \[\alpha ,\beta ,\gamma \] are the roots of the equation \[{x^3} + px + q = 0\] then the value of...
If α,β,γ are the roots of the equation x3+px+q=0 then the value of the determinant \left| {\begin{array}{*{20}{c}}
\alpha &\beta &\gamma \\\
\beta &\gamma &\alpha \\\
\gamma &\alpha &\beta
\end{array}} \right| is
A. q
B. 0
C. p
D. p2−2q
Solution
First of all, consider the value of the given determinant as m and then expand it by the first row. Use an algebraic formula to simplify the determinant. Further find out the sum, product and the sum of two roots at a time of the given equation to get the required answer.
Complete step-by-step answer:
Given that α,β,γ are the roots of the equation x3+px+q=0.
Now, consider the value of the determinant as m. So, we have
\Rightarrow m = \alpha \left[ {\gamma \beta - {\alpha ^2}} \right] - \beta \left[ {{\beta ^2} - \alpha \gamma } \right] + \gamma \left[ {\beta \alpha - {\gamma ^2}} \right] \\
\Rightarrow m = \alpha \beta \gamma - {\alpha ^3} + \alpha \beta \gamma - {\beta ^3} + \alpha \beta \gamma - {\gamma ^3} \\
\Rightarrow m = 3\alpha \beta \gamma - \left( {{\alpha ^3} + {\beta ^3} + {\gamma ^3}} \right)...................................\left( 1 \right) \\
{\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3abc\left( {ab + bc + ca} \right) \\
{\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3\left[ {\left( {a + b + c} \right)\left( {ab + bc + ca} \right) - abc} \right] \\
\Rightarrow m = 3\alpha \beta \gamma - \left( {{\alpha ^3} + {\beta ^3} + {\gamma ^3}} \right) \\
\Rightarrow m = 3\alpha \beta \gamma - \left[ {{{\left( {\alpha + \beta + \gamma } \right)}^3} - 3\left\{ {\left( {\alpha + \beta + \gamma } \right)\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) - \alpha \beta \gamma } \right\}} \right]...........\left( 5 \right) \\
\Rightarrow m = 3\left( { - q} \right) - \left[ {{{\left( 0 \right)}^3} - 3\left\{ {\left( 0 \right)\left( p \right) - \left( q \right)} \right\}} \right] \\
\Rightarrow m = 3\left( { - q} \right) - \left[ {0 - 3\left( {0 - q} \right)} \right] \\
\Rightarrow m = - 3q - \left[ {0 - 3q} \right] \\
\Rightarrow m = - 3q + 3q \\
\therefore m = 0 \\