Solveeit Logo

Question

Question: If \[\alpha ,\beta ,\gamma \] are the roots of the equation \[{x^3} + px + q = 0\] then the value of...

If α,β,γ\alpha ,\beta ,\gamma are the roots of the equation x3+px+q=0{x^3} + px + q = 0 then the value of the determinant \left| {\begin{array}{*{20}{c}} \alpha &\beta &\gamma \\\ \beta &\gamma &\alpha \\\ \gamma &\alpha &\beta \end{array}} \right| is
A. qq
B. 0
C. pp
D. p22q{p^2} - 2q

Explanation

Solution

First of all, consider the value of the given determinant as mm and then expand it by the first row. Use an algebraic formula to simplify the determinant. Further find out the sum, product and the sum of two roots at a time of the given equation to get the required answer.

Complete step-by-step answer:
Given that α,β,γ\alpha ,\beta ,\gamma are the roots of the equation x3+px+q=0{x^3} + px + q = 0.
Now, consider the value of the determinant as mm. So, we have

\alpha &\beta &\gamma \\\ \beta &\gamma &\alpha \\\ \gamma &\alpha &\beta \end{array}} \right|$$ Opening the determinant by first row, we have

\Rightarrow m = \alpha \left[ {\gamma \beta - {\alpha ^2}} \right] - \beta \left[ {{\beta ^2} - \alpha \gamma } \right] + \gamma \left[ {\beta \alpha - {\gamma ^2}} \right] \\
\Rightarrow m = \alpha \beta \gamma - {\alpha ^3} + \alpha \beta \gamma - {\beta ^3} + \alpha \beta \gamma - {\gamma ^3} \\
\Rightarrow m = 3\alpha \beta \gamma - \left( {{\alpha ^3} + {\beta ^3} + {\gamma ^3}} \right)...................................\left( 1 \right) \\

We know that for a cubic equation $$a{x^3} + b{x^2} + cx + d = 0$$ the sum of the roots is given by $$\dfrac{{ - b}}{a}$$, the sum of two roots at a time is given by $$\dfrac{c}{a}$$ and the product of the roots are given by $$\dfrac{{ - d}}{a}$$. Now, for the given equation $${x^3} + px + q = 0$$ we have Sum of the roots is$$\alpha + \beta + \gamma = \dfrac{{ - 0}}{1} = 0...........\left( 2 \right)$$ Sum of two roots at a time is $$\alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{p}{1} = p..............\left( 3 \right)$$ Product of the roots is $$\alpha \beta \gamma = \dfrac{{ - q}}{1} = - q...........\left( 4 \right)$$ We know that

{\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3abc\left( {ab + bc + ca} \right) \\
{\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3\left[ {\left( {a + b + c} \right)\left( {ab + bc + ca} \right) - abc} \right] \\

By using this formula equation $$\left( 1 \right)$$ can be written as

\Rightarrow m = 3\alpha \beta \gamma - \left( {{\alpha ^3} + {\beta ^3} + {\gamma ^3}} \right) \\
\Rightarrow m = 3\alpha \beta \gamma - \left[ {{{\left( {\alpha + \beta + \gamma } \right)}^3} - 3\left\{ {\left( {\alpha + \beta + \gamma } \right)\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) - \alpha \beta \gamma } \right\}} \right]...........\left( 5 \right) \\

By substituting $$\left( 2 \right),\left( 3 \right),\left( 4 \right)$$ in equation$$\left( 5 \right)$$, we get

\Rightarrow m = 3\left( { - q} \right) - \left[ {{{\left( 0 \right)}^3} - 3\left\{ {\left( 0 \right)\left( p \right) - \left( q \right)} \right\}} \right] \\
\Rightarrow m = 3\left( { - q} \right) - \left[ {0 - 3\left( {0 - q} \right)} \right] \\
\Rightarrow m = - 3q - \left[ {0 - 3q} \right] \\
\Rightarrow m = - 3q + 3q \\
\therefore m = 0 \\

Therefore, the value of the given determinant is 0. **So, the correct answer is “Option B”.** **Note:** For a cubic equation $$a{x^3} + b{x^2} + cx + d = 0$$ the sum of the roots is given by $$\dfrac{{ - b}}{a}$$, the sum of two roots at a time is given by $$\dfrac{c}{a}$$ and the product of the roots are given by $$\dfrac{{ - d}}{a}$$. Always remember the algebraic formula $${\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3abc\left( {ab + bc + ca} \right)$$ to solve these kinds of problems.