Question
Mathematics Question on Complex Numbers and Quadratic Equations
If α,β,γ are the roots of the equation x3−7x+7=0, then α41+β41+γ41 is
A
37
B
73
C
74
D
47
Answer
73
Explanation
Solution
Given α,β,γ
are the roots of the equation
x3−7x+7=0 .
∴ Σα=0,Σαβ=−7,αβγ=−7
Now, α41+β41+γ41=α4β4γ4α4β4+β4γ4+γ4α4
=α4β4γ4Σα4β4 ..(i)
ΣαβΣαβΣαβΣαβ=(Σαβ)2.(Σαβ)2
⇒ (−7)4=(α2β2+β2γ2+γ2α2+2α2βγ
+2αβ2γ+2αβγ2)
(α2β2+β2γ2+γ2α2+2α2β2+2αβ2γ+2αβγ2)
=[α2β2+β2γ2+γ2α2+2αβγ(α+β+γ)]
[α2β2+β2γ2+γ2α2+2αβγ(α+β+γ)]
=(α2β2+β2γ2+γ2α2)
(α2β2+β2γ2+γ2α2)
(∵Σα=α+β+γ=0)
=α2β2+β2γ4+γ4α4+2α4β2γ2
+2α2β4γ2+2α2β2γ4
=Σα2β4+2α2β2γ2(α2+β2+γ2)
=Σα4β4+2α2β2γ2[(Σα)2−2Σαβ]
=Σα4β4+2α2β2γ2[0−2×(−7)]
⇒ (−7)4=Σα4β4+2(−7)2(2×7)
⇒ Σα4β4=(−7)4+4(−7)3
⇒ Σα2β4=(−7)3(−7+4)=−3(−7)3
On putting this value in E (i), we get α41+β41+γ41=(−7)4−3(−7)3=−7−3=73 `