Solveeit Logo

Question

Question: If $\alpha$, $\beta$, $\gamma$ are the roots of equation $x^3=x^2+1$, then find the equation whose r...

If α\alpha, β\beta, γ\gamma are the roots of equation x3=x2+1x^3=x^2+1, then find the equation whose roots are α2+β3+γ4\alpha^2 + \beta^3 + \gamma^4, α4+β2+γ3\alpha^4 + \beta^2 + \gamma^3, γ2+α3+β4\gamma^2 + \alpha^3 + \beta^4.

Answer

y^3 - 10y^2 + 33y - 37 = 0

Explanation

Solution

Let the given equation be P(x)=x3x21=0P(x) = x^3 - x^2 - 1 = 0. Let its roots be α,β,γ\alpha, \beta, \gamma.

From Vieta's formulas:

  1. Sum of roots: α+β+γ=(1)/1=1\alpha + \beta + \gamma = -(-1)/1 = 1
  2. Sum of products of roots taken two at a time: αβ+βγ+γα=0/1=0\alpha\beta + \beta\gamma + \gamma\alpha = 0/1 = 0
  3. Product of roots: αβγ=(1)/1=1\alpha\beta\gamma = -(-1)/1 = 1

Since α,β,γ\alpha, \beta, \gamma are roots of x3x21=0x^3 - x^2 - 1 = 0, they satisfy the equation: α3=α2+1\alpha^3 = \alpha^2 + 1 β3=β2+1\beta^3 = \beta^2 + 1 γ3=γ2+1\gamma^3 = \gamma^2 + 1

We can also find expressions for higher powers: α4=αα3=α(α2+1)=α3+α=(α2+1)+α=α2+α+1\alpha^4 = \alpha \cdot \alpha^3 = \alpha(\alpha^2 + 1) = \alpha^3 + \alpha = (\alpha^2 + 1) + \alpha = \alpha^2 + \alpha + 1 Similarly, β4=β2+β+1\beta^4 = \beta^2 + \beta + 1 γ4=γ2+γ+1\gamma^4 = \gamma^2 + \gamma + 1

The new roots are given as: y1=α2+β3+γ4y_1 = \alpha^2 + \beta^3 + \gamma^4 y2=α4+β2+γ3y_2 = \alpha^4 + \beta^2 + \gamma^3 y3=γ2+α3+β4y_3 = \gamma^2 + \alpha^3 + \beta^4

Let's substitute the simplified power expressions into the new roots: For y1y_1: y1=α2+(β2+1)+(γ2+γ+1)y_1 = \alpha^2 + (\beta^2 + 1) + (\gamma^2 + \gamma + 1) y1=α2+β2+γ2+γ+2y_1 = \alpha^2 + \beta^2 + \gamma^2 + \gamma + 2

For y2y_2: y2=(α2+α+1)+β2+(γ2+1)y_2 = (\alpha^2 + \alpha + 1) + \beta^2 + (\gamma^2 + 1) y2=α2+β2+γ2+α+2y_2 = \alpha^2 + \beta^2 + \gamma^2 + \alpha + 2

For y3y_3 (rearranging terms for consistency: α3+β4+γ2\alpha^3 + \beta^4 + \gamma^2): y3=(α2+1)+(β2+β+1)+γ2y_3 = (\alpha^2 + 1) + (\beta^2 + \beta + 1) + \gamma^2 y3=α2+β2+γ2+β+2y_3 = \alpha^2 + \beta^2 + \gamma^2 + \beta + 2

Now, let's calculate the sum of squares of the original roots, S2=α2+β2+γ2S_2 = \alpha^2 + \beta^2 + \gamma^2: S2=(α+β+γ)22(αβ+βγ+γα)S_2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) Using Vieta's formulas: S2=(1)22(0)=1S_2 = (1)^2 - 2(0) = 1

Substitute S2=1S_2 = 1 into the expressions for y1,y2,y3y_1, y_2, y_3: y1=1+γ+2=γ+3y_1 = 1 + \gamma + 2 = \gamma + 3 y2=1+α+2=α+3y_2 = 1 + \alpha + 2 = \alpha + 3 y3=1+β+2=β+3y_3 = 1 + \beta + 2 = \beta + 3

So, the new roots are α+3\alpha+3, β+3\beta+3, and γ+3\gamma+3. If the roots of the new equation are yy, and the roots of the original equation are xx, then y=x+3y = x+3. This implies x=y3x = y-3. Substitute x=y3x = y-3 into the original equation x3x21=0x^3 - x^2 - 1 = 0: (y3)3(y3)21=0(y-3)^3 - (y-3)^2 - 1 = 0

Expand the terms: (y3)3=y33(y2)(3)+3(y)(32)33=y39y2+27y27(y-3)^3 = y^3 - 3(y^2)(3) + 3(y)(3^2) - 3^3 = y^3 - 9y^2 + 27y - 27 (y3)2=y22(y)(3)+32=y26y+9(y-3)^2 = y^2 - 2(y)(3) + 3^2 = y^2 - 6y + 9

Substitute these expansions back into the equation: (y39y2+27y27)(y26y+9)1=0(y^3 - 9y^2 + 27y - 27) - (y^2 - 6y + 9) - 1 = 0 y39y2+27y27y2+6y91=0y^3 - 9y^2 + 27y - 27 - y^2 + 6y - 9 - 1 = 0

Combine like terms: y3+(91)y2+(27+6)y+(2791)=0y^3 + (-9-1)y^2 + (27+6)y + (-27-9-1) = 0 y310y2+33y37=0y^3 - 10y^2 + 33y - 37 = 0

This is the equation whose roots are α+3,β+3,γ+3\alpha+3, \beta+3, \gamma+3.