Solveeit Logo

Question

Question: If $\alpha$, $\beta$, $\gamma$ are the roots of equation $x^3 = x^2 + 1$, then find the equation who...

If α\alpha, β\beta, γ\gamma are the roots of equation x3=x2+1x^3 = x^2 + 1, then find the equation whose roots are α2+β3+γ4\alpha^2 + \beta^3 + \gamma^4, α4+β2+γ3\alpha^4 + \beta^2 + \gamma^3, γ2+α3+β4\gamma^2 + \alpha^3 + \beta^4.

Answer

x^3 - 10x^2 + 33x - 37 = 0

Explanation

Solution

The given equation is x3=x2+1x^3 = x^2 + 1. Its roots are α,β,γ\alpha, \beta, \gamma.

From this equation, we can derive relations for higher powers of the roots:

  1. x3=x2+1x^3 = x^2 + 1
  2. x4=xx3=x(x2+1)=x3+xx^4 = x \cdot x^3 = x(x^2+1) = x^3+x. Substituting x3=x2+1x^3=x^2+1 again, we get x4=(x2+1)+x=x2+x+1x^4 = (x^2+1)+x = x^2+x+1.

From Vieta's formulas for x3x21=0x^3 - x^2 - 1 = 0:

α+β+γ=1\alpha + \beta + \gamma = 1

αβ+βγ+γα=0\alpha\beta + \beta\gamma + \gamma\alpha = 0

αβγ=1\alpha\beta\gamma = 1

Now, let's find the sum of squares of the roots:

α2+β2+γ2=(α+β+γ)22(αβ+βγ+γα)=(1)22(0)=1\alpha^2 + \beta^2 + \gamma^2 = (\alpha+\beta+\gamma)^2 - 2(\alpha\beta+\beta\gamma+\gamma\alpha) = (1)^2 - 2(0) = 1.

The roots of the new equation are y1=α2+β3+γ4y_1 = \alpha^2 + \beta^3 + \gamma^4, y2=α4+β2+γ3y_2 = \alpha^4 + \beta^2 + \gamma^3, y3=γ2+α3+β4y_3 = \gamma^2 + \alpha^3 + \beta^4.

Let's simplify these expressions using the relations derived:

For y1y_1:

y1=α2+β3+γ4y_1 = \alpha^2 + \beta^3 + \gamma^4

Substitute β3=β2+1\beta^3 = \beta^2+1 and γ4=γ2+γ+1\gamma^4 = \gamma^2+\gamma+1:

y1=α2+(β2+1)+(γ2+γ+1)y_1 = \alpha^2 + (\beta^2+1) + (\gamma^2+\gamma+1)

y1=(α2+β2+γ2)+γ+2y_1 = (\alpha^2+\beta^2+\gamma^2) + \gamma + 2

Since α2+β2+γ2=1\alpha^2+\beta^2+\gamma^2 = 1:

y1=1+γ+2=γ+3y_1 = 1 + \gamma + 2 = \gamma + 3

Similarly for y2y_2:

y2=α4+β2+γ3y_2 = \alpha^4 + \beta^2 + \gamma^3

Substitute α4=α2+α+1\alpha^4 = \alpha^2+\alpha+1 and γ3=γ2+1\gamma^3 = \gamma^2+1:

y2=(α2+α+1)+β2+(γ2+1)y_2 = (\alpha^2+\alpha+1) + \beta^2 + (\gamma^2+1)

y2=(α2+β2+γ2)+α+2y_2 = (\alpha^2+\beta^2+\gamma^2) + \alpha + 2

y2=1+α+2=α+3y_2 = 1 + \alpha + 2 = \alpha + 3

And for y3y_3:

y3=γ2+α3+β4y_3 = \gamma^2 + \alpha^3 + \beta^4

Substitute α3=α2+1\alpha^3 = \alpha^2+1 and β4=β2+β+1\beta^4 = \beta^2+\beta+1:

y3=γ2+(α2+1)+(β2+β+1)y_3 = \gamma^2 + (\alpha^2+1) + (\beta^2+\beta+1)

y3=(α2+β2+γ2)+β+2y_3 = (\alpha^2+\beta^2+\gamma^2) + \beta + 2

y3=1+β+2=β+3y_3 = 1 + \beta + 2 = \beta + 3

So, the roots of the new equation are α+3,β+3,γ+3\alpha+3, \beta+3, \gamma+3.

Let yy be a root of the new equation. Then y=x+3y = x+3, which implies x=y3x = y-3.

Substitute x=y3x=y-3 into the original equation x3x21=0x^3 - x^2 - 1 = 0:

(y3)3(y3)21=0(y-3)^3 - (y-3)^2 - 1 = 0

Expand the terms:

(y3)3=y33(y2)(3)+3(y)(32)33=y39y2+27y27(y-3)^3 = y^3 - 3(y^2)(3) + 3(y)(3^2) - 3^3 = y^3 - 9y^2 + 27y - 27

(y3)2=y22(y)(3)+32=y26y+9(y-3)^2 = y^2 - 2(y)(3) + 3^2 = y^2 - 6y + 9

Substitute these expansions back into the equation:

(y39y2+27y27)(y26y+9)1=0(y^3 - 9y^2 + 27y - 27) - (y^2 - 6y + 9) - 1 = 0

y39y2+27y27y2+6y91=0y^3 - 9y^2 + 27y - 27 - y^2 + 6y - 9 - 1 = 0

Combine like terms:

y3+(91)y2+(27+6)y+(2791)=0y^3 + (-9-1)y^2 + (27+6)y + (-27-9-1) = 0

y310y2+33y37=0y^3 - 10y^2 + 33y - 37 = 0

This is the equation whose roots are α+3,β+3,γ+3\alpha+3, \beta+3, \gamma+3.