Solveeit Logo

Question

Question: If \( \alpha ,\beta ,\gamma \) are the cube roots of \( 8 \) then find the value of \( \left| {\begi...

If α,β,γ\alpha ,\beta ,\gamma are the cube roots of 88 then find the value of \left| {\begin{array}{*{20}{c}} \alpha &\beta &\gamma \\\ \beta &\gamma &\alpha \\\ \gamma &\alpha &\beta \end{array}} \right| .
(A) 00
(B) 11
(C) 88
(D) 22

Explanation

Solution

Hint : In this problem, first we will find the cube roots of the number 88 . Then, we will find the sum of these roots. Then, we will evaluate the required value of determinant by using row-operations.

Complete step-by-step answer :
In this problem, it is given that α,β,γ\alpha ,\beta ,\gamma are the cube roots of 88 . Let us find the cube roots of 88 . For this, we have to solve the equation x=(8)13x = {\left( 8 \right)^{\dfrac{1}{3}}} . That is, we have to solve the equation x38=0(1){x^3} - 8 = 0 \cdots \cdots \left( 1 \right) . We know that a3b3=(ab)(a2+ab+b2){a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) . Use this information to solve the equation (1)\left( 1 \right) . So, we can write
x38=0 (x2)(x2+2x+4)=0 x2=0,x2+2x+4=0 x=2,x2+2x+4=0   {x^3} - 8 = 0 \\\ \Rightarrow \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right) = 0 \\\ \Rightarrow x - 2 = 0,\quad {x^2} + 2x + 4 = 0 \\\ \Rightarrow x = 2,\quad {x^2} + 2x + 4 = 0 \;
Let us solve the second equation x2+2x+4=0{x^2} + 2x + 4 = 0 by using the formula x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} . Note that here a=1,b=2,c=4a = 1,b = 2,c = 4 . Hence, we can write
x2+2x+4=0 x=2±4162 x=2±122 x=2±1×4×32 x=2±23i2[i=1] x=1±3i x=1+3i,x=13i   {x^2} + 2x + 4 = 0 \\\ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {4 - 16} }}{2} \\\ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt { - 12} }}{2} \\\ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt { - 1 \times 4 \times 3} }}{2} \\\ \Rightarrow x = \dfrac{{ - 2 \pm 2\sqrt 3 i}}{2}\quad \left[ {\because i = \sqrt { - 1} } \right] \\\ \Rightarrow x = - 1 \pm \sqrt 3 i \\\ \Rightarrow x = - 1 + \sqrt 3 i,\quad x = - 1 - \sqrt 3 i \;
Hence, we have three roots α=2,β=1+3i,γ=13i\alpha = 2,\quad \beta = - 1 + \sqrt 3 i,\quad \gamma = - 1 - \sqrt 3 i .
Let us find the sum of these three roots. So, we can write
α+β+γ=2+(1+3i)+(13i)=0\alpha + \beta + \gamma = 2 + \left( { - 1 + \sqrt 3 i} \right) + \left( { - 1 - \sqrt 3 i} \right) = 0
Now we are going to find the value of \left| {\begin{array}{*{20}{c}} \alpha &\beta &\gamma \\\ \beta &\gamma &\alpha \\\ \gamma &\alpha &\beta \end{array}} \right| by using row-operations.
Let us say D = \left| {\begin{array}{*{20}{c}} \alpha &\beta &\gamma \\\ \beta &\gamma &\alpha \\\ \gamma &\alpha &\beta \end{array}} \right| . Apply R1R1+R2+R3{R_1} \to {R_1} + {R_2} + {R_3} . So, we can write
D = \left| {\begin{array}{*{20}{c}} {\alpha + \beta + \gamma }&{\beta + \gamma + \alpha }&{\gamma + \alpha + \beta } \\\ \beta &\gamma &\alpha \\\ \gamma &\alpha &\beta \end{array}} \right|
Taking α+β+γ\alpha + \beta + \gamma common from the first row. So, we can write
D = \left( {\alpha + \beta + \gamma } \right)\left| {\begin{array}{*{20}{c}} 1&1&1 \\\ \beta &\gamma &\alpha \\\ \gamma &\alpha &\beta \end{array}} \right| \\\ \Rightarrow D = 0\left| {\begin{array}{*{20}{c}} 1&1&1 \\\ \beta &\gamma &\alpha \\\ \gamma &\alpha &\beta \end{array}} \right|\quad \left[ {\because \alpha + \beta + \gamma = 0} \right] \\\ \Rightarrow D = 0 \;
Hence, if α,β,γ\alpha ,\beta ,\gamma are the cube roots of 88 then value of \left| {\begin{array}{*{20}{c}} \alpha &\beta &\gamma \\\ \beta &\gamma &\alpha \\\ \gamma &\alpha &\beta \end{array}} \right| is zero.

Note : Sometimes it is difficult to evaluate the determinant directly. So, in that case we can use row-operations to evaluate the determinant. To find cube roots of any number NN , we have to solve the equation x3N=0{x^3} - N = 0 . To solve the quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 , we can use the formula x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} . In the given problem, we get one real root x=2x = 2 and two complex roots x=1±3ix = - 1 \pm \sqrt 3 i . Every cubic equation has at least one real root.