Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If α,β,γ\alpha ,\beta ,\gamma are the cube roots of a negative number pp, then for any three real numbers, x,y,zx,y,z the value of xα+yβ+zγxβ+yγ+zα\frac{x\alpha +y\beta +z\gamma }{x\beta +y\gamma +z\alpha } is

A

1i32\frac{1-i\sqrt{3}}{2}

B

1i32\frac{-1-i\sqrt{3}}{2}

C

(x+y+z)i(x+y+z)i

D

pipi

Answer

1i32\frac{-1-i\sqrt{3}}{2}

Explanation

Solution

As p<0,p<0, therefore p=q,p=-q, where q>0q>0
\therefore p1/3=(q)1/3=q1/3(1)1/3{{p}^{1/3}}={{(-q)}^{1/3}}={{q}^{1/3}}{{(-1)}^{1/3}}
\Rightarrow p1/3=q1/3,q1/3ω,q1/3ω2{{p}^{1/3}}=-{{q}^{1/3}},-{{q}^{1/3}}\omega ,-{{q}^{1/3}}{{\omega }^{2}}
\therefore xα+yβ+zγxβ+yγ+zα=x+yω+zω2xω+yω2+z=ω2\frac{x\alpha +y\beta +z\gamma }{x\beta +y\gamma +z\alpha }=\frac{x+y\omega +z{{\omega }^{2}}}{x\omega +y{{\omega }^{2}}+z}={{\omega }^{2}}
=1i32=\frac{-1-i\sqrt{3}}{2}