Solveeit Logo

Question

Question: If $\alpha$, $\beta$, $\gamma$ are direction angles of a line and $\alpha = 60^\circ$, $\beta = 45^\...

If α\alpha, β\beta, γ\gamma are direction angles of a line and α=60\alpha = 60^\circ, β=45\beta = 45^\circ, γ=\gamma = ____ .

A

30° and 90°

B

45° and 60°

C

90° and 30°

D

60° and 120°

Answer

60° and 120°

Explanation

Solution

Direction angles α\alpha, β\beta, γ\gamma of a line satisfy the fundamental relation: cos2α+cos2β+cos2γ=1\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1

Given α=60\alpha = 60^\circ and β=45\beta = 45^\circ. We know the values of cos(60)\cos(60^\circ) and cos(45)\cos(45^\circ):

cos(60)=12\cos(60^\circ) = \frac{1}{2} cos(45)=12\cos(45^\circ) = \frac{1}{\sqrt{2}}

Substitute these values into the relation:

(12)2+(12)2+cos2γ=1\left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + \cos^2\gamma = 1 14+12+cos2γ=1\frac{1}{4} + \frac{1}{2} + \cos^2\gamma = 1

Combine the fractions:

14+24+cos2γ=1\frac{1}{4} + \frac{2}{4} + \cos^2\gamma = 1 34+cos2γ=1\frac{3}{4} + \cos^2\gamma = 1

Now, solve for cos2γ\cos^2\gamma:

cos2γ=134\cos^2\gamma = 1 - \frac{3}{4} cos2γ=14\cos^2\gamma = \frac{1}{4}

Take the square root of both sides to find cosγ\cos\gamma:

cosγ=±14\cos\gamma = \pm\sqrt{\frac{1}{4}} cosγ=±12\cos\gamma = \pm\frac{1}{2}

This gives two possible values for cosγ\cos\gamma:

  1. If cosγ=12\cos\gamma = \frac{1}{2}, then γ=60\gamma = 60^\circ (since direction angles are usually taken in the range [0,180][0^\circ, 180^\circ]).
  2. If cosγ=12\cos\gamma = -\frac{1}{2}, then γ=120\gamma = 120^\circ (since direction angles are usually taken in the range [0,180][0^\circ, 180^\circ]).

Thus, the possible values for γ\gamma are 6060^\circ and 120120^\circ.