Solveeit Logo

Question

Question: If \(\alpha + \beta + \gamma = 2\pi,\) then...

If α+β+γ=2π,\alpha + \beta + \gamma = 2\pi, then

A

tanα2+tanβ2+tanγ2=tanα2tanβ2tanγ2\tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan\frac{\gamma}{2} = \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}

B

tanα2tanβ2+tanβ2tanγ2+tanγ2tanα2=1\tan\frac{\alpha}{2}\tan\frac{\beta}{2} + \tan\frac{\beta}{2}\tan\frac{\gamma}{2} + \tan\frac{\gamma}{2}\tan\frac{\alpha}{2} = 1

C

tanα2+tanβ2+tanγ2=tanα2tanβ2tanγ2\tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan\frac{\gamma}{2} = - \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}

D

None of these

Answer

tanα2+tanβ2+tanγ2=tanα2tanβ2tanγ2\tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan\frac{\gamma}{2} = \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}

Explanation

Solution

We have α+β+γ=2πα2+β2+γ2=π\alpha + \beta + \gamma = 2\pi \Rightarrow \frac{\alpha}{2} + \frac{\beta}{2} + \frac{\gamma}{2} = \pi

tan(α2+β2+γ2)=tanπ=0\Rightarrow \tan\left( \frac{\alpha}{2} + \frac{\beta}{2} + \frac{\gamma}{2} \right) = \tan\pi = 0

tanα2+tanβ2+tanγ2tanα2tanβ2tanγ2=0\Rightarrow \tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan\frac{\gamma}{2} - \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2} = 0

tanα2+tanβ2+tanγ2=tanα2tanβ2tanγ2\Rightarrow \tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan\frac{\gamma}{2} = \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}.