Solveeit Logo

Question

Question: If \(\alpha +\beta +\gamma =2\theta \) , then \(\cos \theta +\cos \left( \theta -\alpha \right)+\cos...

If α+β+γ=2θ\alpha +\beta +\gamma =2\theta , then cosθ+cos(θα)+cos(θβ)+cos(θγ)\cos \theta +\cos \left( \theta -\alpha \right)+\cos \left( \theta -\beta \right)+\cos \left( \theta -\gamma \right) is equal to:

  1. 4sin(α2)cos(β2)sin(γ2)4\sin \left( \dfrac{\alpha }{2} \right)\cos \left( \dfrac{\beta }{2} \right)\sin \left( \dfrac{\gamma }{2} \right)
  2. 4cos(α2)cos(β2)cos(γ2)4\cos \left( \dfrac{\alpha }{2} \right)\cos \left( \dfrac{\beta }{2} \right)\cos \left( \dfrac{\gamma }{2} \right)
  3. 4sin(α2)sin(β2)sin(γ2)4\sin \left( \dfrac{\alpha }{2} \right)\sin \left( \dfrac{\beta }{2} \right)\sin \left( \dfrac{\gamma }{2} \right)
  4. 4sinαsinβsinγ4\sin \alpha \sin \beta \sin \gamma
Explanation

Solution

Here in this question it is given that α+β+γ=2θ\alpha +\beta +\gamma =2\theta we have been asked to find the simplified value of the given expression cosθ+cos(θα)+cos(θβ)+cos(θγ)\cos \theta +\cos \left( \theta -\alpha \right)+\cos \left( \theta -\beta \right)+\cos \left( \theta -\gamma \right) . For answering this question we will use the trigonometric identity given as cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) .

Complete step-by-step solution:
Now considering from the question it is given that α+β+γ=2θ\alpha +\beta +\gamma =2\theta we have been asked to find the simplified value of the given expression cosθ+cos(θα)+cos(θβ)+cos(θγ)\cos \theta +\cos \left( \theta -\alpha \right)+\cos \left( \theta -\beta \right)+\cos \left( \theta -\gamma \right) .
From the basic concepts of trigonometry we know the trigonometric identity given as cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) .
Now by using this formula and simplifying the given expression we will have 2cos(2θα2)cos(α2)+cos(θβ)+cos(θγ)\Rightarrow 2\cos \left( \dfrac{2\theta -\alpha }{2} \right)\cos \left( \dfrac{\alpha }{2} \right)+\cos \left( \theta -\beta \right)+\cos \left( \theta -\gamma \right) .
Now by again using the same formula in the above expression we will have 2cos(2θα2)cos(α2)+2cos(2θβγ2)cos(γβ2)\Rightarrow 2\cos \left( \dfrac{2\theta -\alpha }{2} \right)\cos \left( \dfrac{\alpha }{2} \right)+2\cos \left( \dfrac{2\theta -\beta -\gamma }{2} \right)\cos \left( \dfrac{\gamma -\beta }{2} \right).
As it is given that α+β+γ=2θ\alpha +\beta +\gamma =2\theta we will have 2θβγ=α\Rightarrow 2\theta -\beta -\gamma =\alpha by using this in the above expression we will have 2cos(2θα2)cos(α2)+2cos(α2)cos(γβ2)\Rightarrow 2\cos \left( \dfrac{2\theta -\alpha }{2} \right)\cos \left( \dfrac{\alpha }{2} \right)+2\cos \left( \dfrac{\alpha }{2} \right)\cos \left( \dfrac{\gamma -\beta }{2} \right) .
Now by taking out 2cos(α2)2\cos \left( \dfrac{\alpha }{2} \right) we will have 2cos(α2)(cos(2θα2)+cos(γβ2))\Rightarrow 2\cos \left( \dfrac{\alpha }{2} \right)\left( \cos \left( \dfrac{2\theta -\alpha }{2} \right)+\cos \left( \dfrac{\gamma -\beta }{2} \right) \right) .
Now again using the trigonometric identity that we have discussed above in the above expression we will have 2cos(α2)(2cos((2θα+γβ2)2)cos((2θα+βγ2)2))\Rightarrow 2\cos \left( \dfrac{\alpha }{2} \right)\left( 2\cos \left( \dfrac{\left( \dfrac{2\theta -\alpha +\gamma -\beta }{2} \right)}{2} \right)\cos \left( \dfrac{\left( \dfrac{2\theta -\alpha +\beta -\gamma }{2} \right)}{2} \right) \right) .
As it is given that α+β+γ=2θ\alpha +\beta +\gamma =2\theta we will have 2θαβ=γ\Rightarrow 2\theta -\alpha -\beta =\gamma by using this in the above expression we will have
2cos(α2)(2cos((γ+γ2)2)cos((2θα+βγ2)2)) 2cos(α2)(2cos(γ2)cos((2θα+βγ2)2)) \begin{aligned} & \Rightarrow 2\cos \left( \dfrac{\alpha }{2} \right)\left( 2\cos \left( \dfrac{\left( \dfrac{\gamma +\gamma }{2} \right)}{2} \right)\cos \left( \dfrac{\left( \dfrac{2\theta -\alpha +\beta -\gamma }{2} \right)}{2} \right) \right) \\\ & \Rightarrow 2\cos \left( \dfrac{\alpha }{2} \right)\left( 2\cos \left( \dfrac{\gamma }{2} \right)\cos \left( \dfrac{\left( \dfrac{2\theta -\alpha +\beta -\gamma }{2} \right)}{2} \right) \right) \\\ \end{aligned} .
As it is given that α+β+γ=2θ\alpha +\beta +\gamma =2\theta we will have 2θαγ=β\Rightarrow 2\theta -\alpha -\gamma =\beta by using this in the above expression we will have
2cos(α2)(2cos(γ2)cos((β+β2)2)) 2cos(α2)(2cos(γ2)cos(β2)) \begin{aligned} & \Rightarrow 2\cos \left( \dfrac{\alpha }{2} \right)\left( 2\cos \left( \dfrac{\gamma }{2} \right)\cos \left( \dfrac{\left( \dfrac{\beta +\beta }{2} \right)}{2} \right) \right) \\\ & \Rightarrow 2\cos \left( \dfrac{\alpha }{2} \right)\left( 2\cos \left( \dfrac{\gamma }{2} \right)\cos \left( \dfrac{\beta }{2} \right) \right) \\\ \end{aligned} .
Therefore we can conclude that when it is given that α+β+γ=2θ\alpha +\beta +\gamma =2\theta we have been asked to find the simplified value of the given expression cosθ+cos(θα)+cos(θβ)+cos(θγ)=4cos(α2)cos(β2)cos(γ2)\cos \theta +\cos \left( \theta -\alpha \right)+\cos \left( \theta -\beta \right)+\cos \left( \theta -\gamma \right)=4\cos \left( \dfrac{\alpha }{2} \right)\cos \left( \dfrac{\beta }{2} \right)\cos \left( \dfrac{\gamma }{2} \right) .
Hence we will mark the option “2” as correct.

Note: During the process of answering questions of this type we should be sure with the formula that we are going to use in between the steps of simplifying the expression. This is a very easy question and can be answered in a short span of time just by using a single formula only. Similarly we have another formula given as sinA+sinB=2sin(A+B2)cos(AB2)\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) .