Solveeit Logo

Question

Question: If \(\alpha +\beta +\gamma =2\pi \) , then A.\(\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}+\tan...

If α+β+γ=2π\alpha +\beta +\gamma =2\pi , then
A.tanα2+tanβ2+tanγ2=tanα2tanβ2tanγ2\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}+\tan \dfrac{\gamma }{2}=\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}
B.tanα2+tanβ2+tanγ2=2tanα2tanβ2tanγ2\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}+\tan \dfrac{\gamma }{2}=2\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}
C.tanα2+tanβ2+tanγ2=tanα2tanβ2tanγ2\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}+\tan \dfrac{\gamma }{2}=-\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}
D.None of these

Explanation

Solution

Hint: Divide the whole equation α+β+γ=2π\alpha +\beta +\gamma =2\pi by 2. Now, transfer α\alpha or β\beta or γ\gamma to the other side of the equation. Now, take tan to both sides of the equation and apply the trigonometric identities, given as
tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}
tan(πθ)=tanθ\tan \left( \pi -\theta \right)=-\tan \theta

Complete step-by-step answer:
We are given α+β+γ=2π\alpha +\beta +\gamma =2\pi ………………………………(i)
As the given options has involvement of tanα2,tanβ2,tanγ2\tan \dfrac{\alpha }{2},\tan \dfrac{\beta }{2},\tan \dfrac{\gamma }{2} it means we have to apply tan function to equation (i) with re-writing the terms (by dividing the whole equation by 2) as
α2+β2+γ2=2π2=π\dfrac{\alpha }{2}+\dfrac{\beta }{2}+\dfrac{\gamma }{2}=\dfrac{2\pi }{2}=\pi
α2+β2+γ2=πγ2\Rightarrow \dfrac{\alpha }{2}+\dfrac{\beta }{2}+\dfrac{\gamma }{2}=\pi -\dfrac{\gamma }{2} …………………………………(ii)
Now, we can take tan to both sides of the equation. So, we get the above equation as
tan(α2+β2)=tan(πγ2)\tan \left( \dfrac{\alpha }{2}+\dfrac{\beta }{2} \right)=\tan \left( \pi -\dfrac{\gamma }{2} \right) ………………………………………(iii)
Now, as we know the trigonometric identities of tan(x+y)\tan \left( x+y \right) and tan(πθ)\tan \left( \pi -\theta \right) are given as
tan(x+y)=tanx+tany1tanxtany\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y} …………………………………..(iv)
tan(πθ)=tanθ\tan \left( \pi -\theta \right)=-\tan \theta ……………………………….(v)
Now, we can use the above two equations with the equation (iii). So, simplifying LHS of equation (iii) by equation (iv) and RHS of equation (iii) by equation (v) as
tan(α2)+tan(β2)1tan(α2)tan(β2)=tan(γ2)\dfrac{\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)}{1-\tan \left( \dfrac{\alpha }{2} \right)\tan \left( \dfrac{\beta }{2} \right)}=-\tan \left( \dfrac{\gamma }{2} \right)
tan(α2)+tan(β2)1tan(α2)tan(β2)=tan(γ2)1\Rightarrow \dfrac{\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)}{1-\tan \left( \dfrac{\alpha }{2} \right)\tan \left( \dfrac{\beta }{2} \right)}=-\dfrac{\tan \left( \dfrac{\gamma }{2} \right)}{1}
On cross multiplying the above equations, we get
tanα2+tanβ2=tanγ2(1tanα2tanβ2)\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}=-\tan \dfrac{\gamma }{2}\left( 1-\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2} \right)
tanα2+tanβ2=tanγ2+tanα2tanβ2tanγ2\Rightarrow \tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}=-\tan \dfrac{\gamma }{2}+\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}
tanα2+tanβ2+tanγ2=tanα2tanβ2tanγ2\Rightarrow \tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}+\tan \dfrac{\gamma }{2}=\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}
Hence, we get the above relation among tanα2,tanβ2,tanγ2\tan \dfrac{\alpha }{2},\tan \dfrac{\beta }{2},\tan \dfrac{\gamma }{2} if α+β+γ=2π\alpha +\beta +\gamma =2\pi .
So, option (a) is the correct answer.

Note: One may go wrong if he/she directly applies tan to α+β+γ=2π\alpha +\beta +\gamma =2\pi to both sides. We will get a relation in tanα,tanβ,tanγ\tan \alpha ,\tan \beta ,\tan \gamma , which is not required. We need to get relation among tanα2,tanβ2,tanγ2\tan \dfrac{\alpha }{2},\tan \dfrac{\beta }{2},\tan \dfrac{\gamma }{2} as per the given options. So, be careful with this step, otherwise we have to go longer to get the required answer. So, dividing the equation by 2 is the key point of the question.
One may get the answer from the given option by putting some value of α,β,γ\alpha ,\beta ,\gamma whose sum is 2π2\pi . Example: - 60, 60, 240 or 90, 90, 180 or 120, 120, 120.
So, it can be another approach to get the answer.