Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If α+β=π2andβ+γ\alpha+\beta=\frac{\pi}{2} and \beta+\gamma, then tanαtan \alpha equals

A

2(tanβ+tanγ)2 (tan\beta + tan\gamma)

B

tanβ+tanγtan\beta + tan\gamma

C

tanβ+2tanγtan\beta + 2tan\gamma

D

2tanβ+tanγ2tan\beta + tan\gamma

Answer

tanβ+2tanγtan\beta + 2tan\gamma

Explanation

Solution

Given, \hspace25mm \alpha+\beta=\pi/2 \Rightarrow \alpha=(\pi/2)=\beta \Rightarrow \hspace25mm tan \alpha=tan(\pi/2-\beta) \Rightarrow \hspace25mm tan \alpha=cot \beta \Rightarrow tan \alpha tan \beta=1 Again, \beta+gamma=\alpha \hspace25mm [given] \Rightarrow \hspace25mm \gamma=(\alpha-\beta) \Rightarrow \hspace25mm tan \gamma=tan (\alpha-\beta \Rightarrow \hspace25mm tan \gamma=\frac{tan \alpha-tan\beta}{1+tan \alpha tan\beta} \Rightarrow \hspace25mm \frac{tan \alpha-tan\beta}{1+1} \therefore \hspace15mm 2 tan \gamma = tan \alpha - tan \beta \Rightarrow \hspace15mm tan \alpha=tan \beta+2 tan \gamma