Question
Mathematics Question on Complex Numbers and Quadratic Equations
If α,β are the roots of the quadratic equation x2+ax+b=0,(b=0); then the quadratic equation whose roots are α−β1,β−α1 is
ax2+a(b−1)x+(a−1)2=0
bx2+a(b−1)x+(b−1)2=0
x2+ax+b=0
abx2+bx+a=0
bx2+a(b−1)x+(b−1)2=0
Solution
The correct option is(B): bx 2+a(b−1)x+(b−1)2=0.
Given equation is, x2+ax+b=0,(b=0)
its roots are α and β.
Then, sum of roots =α+β=−a ....(i)
Product of roots =α⋅β=b .....(ii)
Now,
(α−β1)+(β−α1)=(α+β)−(αβα+β)
=−a−b(−a) [from Eqs.(i) and (ii)]
=−a+ba=ba(1−b)
and (α−β1)(β−α1)=αβ−1−1+αβ1
=b+b1−2[ from E (ii) ] ....(iv)
=b1(b2−2b+1)=b1(b−1)2
∴ Required of quadratic equation whose roots are (α−β1) and (β−α1) is
x^{2}-\left\\{\left(\alpha-\frac{1}{\beta}\right)+\left(\beta-\frac{1}{\alpha}\right)\right\\} x
+\left\\{\left(\alpha-\frac{1}{\beta}\right)\left(\beta-\frac{1}{\alpha}\right)\right\\}=0
On putting the values from Eqs. (i) and (ii), we get
x2−ba(1−b)x+b1(b−1)2=0
⇒bx2+a(b−1)x+(b−1)2=0,b=0