Question
Mathematics Question on Complex Numbers and Quadratic Equations
If α,β are the roots of the quadratic equation x2+px+q=0, then the values of α3,β3 and α4+α2β3+β4 are respectively
A
3pq−p3 and p4−3p2q+3q2
B
−p(3q−p2) and (p2−q)(p2+3q)
C
pq−4 and p4−q4
D
3pq−p3 and (p2−q)(p2−3q)
Answer
3pq−p3 and (p2−q)(p2−3q)
Explanation
Solution
The correct answer is D:3pq−p3and(p2−q)(p2−3q)
Given that;
Quadratic equation is x2+px+q=0
∵Sumofroots,α+β=−pandαβ=q
∴(α3+β3)=(α+β)3−3αβ(α+β)
=(−p)3−3q(−p)
=−p3+3pq
andα4+α2β2+β4=(α4+β4)+(αβ)2
=(α2+β2)2−(αβ)2
=[(α+β)2−2αβ]2−(αβ)2
=[(−p)2−2q]2−3(q)2
=[p2−2q]2−3q2
=p4−4p2q+4q2−q2
=p4−4p2q+3q2
=p4−3p2q−p2q+3q2
=p2(p2−3q)−q(p2−3q)
=(p2−q)(p2−3q)