Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If α,β\alpha,\beta are the roots of the equation ax2+bx+c=0ax^2+bx+c = 0 and Sn=αn+βn,S_n = \alpha^n + \beta^n, then a Sn+1+bSn+cSn1S_{n+1} + bS_{n} + cS_{n-1} is equal to

A

00

B

abcabc

C

a+b+ca + b +c

D

NoneoftheseNone\, of\, these

Answer

00

Explanation

Solution

The correct option is(A): 0.

Given, α\alpha and β\beta are the roots of equation
ax2+bx+c=0ax^{2}+bx+c=0
α+β=ba\therefore \alpha+\beta=-\frac{b}{a} and αβ=ca\alpha\beta =\frac{c}{a}
Now, Sn+1=αn+1+βn+1S_{n+1}=\alpha^{n+1}+\beta^{n+1}
=αn+1+βn+1+αnβ+βnααnββnα=\alpha^{n+1}+\beta^{n+1}+\alpha^{n}\beta+\beta^{n}\alpha-\alpha^{n}\beta-\beta^{n}\alpha
=αn(α+β)+βn(α+β)αβ(αn1+βn1)=\alpha^{n}\left(\alpha+\beta\right)+\beta^{n}\left(\alpha+\beta\right)-\alpha\beta \left(\alpha^{n-1}+\beta^{n-1}\right)
=(α+β)(αn+βn)αβ(αn1+βn1)=\left(\alpha+\beta\right)\left(\alpha^{n}+\beta^{n}\right)-\alpha\beta\left(\alpha^{n-1}+\beta^{n-1}\right)
=(α+β)(αn+βn)αβ(αn1+βn1)=\left(\alpha+\beta\right)\left(\alpha^{n}+\beta^{n}\right)-\alpha\beta \left(\alpha^{n-1}+\beta^{n-1}\right)
=baSncaSn1=-\frac{b}{a} S_{n}-\frac{c}{a}S_{n-1}
Sn+1=bSncSn1a\Rightarrow S_{n+1}=\frac{-bS_{n}-cS_{n-1}}{a}
aSn+1+bSn+cSn1=0\therefore aS_{n+1}+bS_{n}+cS_{n-1}=0