Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If α,β\alpha ,\beta are the roots of the equation x2+ax+b=0,{{x}^{2}}+ax+b=0, then 1α2+1β2\frac{1}{{{\alpha }^{2}}}+\frac{1}{{{\beta }^{2}}} is equal to

A

a22bb2\frac{{{a}^{2}}-2b}{{{b}^{2}}}

B

b22ab2\frac{{{b}^{2}}-2a}{{{b}^{2}}}

C

a2+2bb2\frac{{{a}^{2}}+2b}{{{b}^{2}}}

D

b2+2ab2\frac{{{b}^{2}}+2a}{{{b}^{2}}}

Answer

a22bb2\frac{{{a}^{2}}-2b}{{{b}^{2}}}

Explanation

Solution

Since, α\alpha and β\beta are the roots of
x2+ax+b=0,{{x}^{2}}+ax+b=0,
then α+β=a,αβ=b\alpha +\beta =-a,\,\,\alpha \beta =b
\therefore 1α2+1β2=α2+β2(αβ)2\frac{1}{{{\alpha }^{2}}}+\frac{1}{{{\beta }^{2}}}=\frac{{{\alpha }^{2}}+{{\beta }^{2}}}{{{(\alpha \beta )}^{2}}}
=(α+β)22αβ(αβ)2=a22bb2=\frac{{{(\alpha +\beta )}^{2}}-2\alpha \beta }{{{(\alpha \beta )}^{2}}}=\frac{{{a}^{2}}-2b}{{{b}^{2}}}