Solveeit Logo

Question

Question: If \[\alpha ,\beta \] are the roots of the equation \[{x^2} - 4\sqrt 2 kx + 2{e^{4\ln k}} - 1 = 0\] ...

If α,β\alpha ,\beta are the roots of the equation x242kx+2e4lnk1=0{x^2} - 4\sqrt 2 kx + 2{e^{4\ln k}} - 1 = 0 for some k and α2+β2=66{\alpha ^2} + {\beta ^2} = 66, then α3+β3{\alpha ^3} + {\beta ^3} is equal to
A. 322- 32\sqrt 2
B. 2802280\sqrt 2
C. 2802- 280\sqrt 2
D. 2482248\sqrt 2

Explanation

Solution

Comparing the given quadratic equation with the general quadratic equation, we find the values of a, b and c and substitute them in the formula for finding roots of quadratic equation. Assuming the roots as α,β\alpha ,\beta and then substituting them in the equation α2+β2=66{\alpha ^2} + {\beta ^2} = 66 will give us the value of k, which when substituted back in equation of roots will give us the value of roots.

  • General form of quadratic equation is ax2+bx+c=0a{x^2} + bx + c = 0 and the roots are given by the formula b±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}

Complete step-by-step answer:
We have the quadratic equation x242kx+2e4lnk1=0{x^2} - 4\sqrt 2 kx + 2{e^{4\ln k}} - 1 = 0.
On comparing with general quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 we get,

a=1 b=42k c=2e4lnk1  a = 1 \\\ b = - 4\sqrt 2 k \\\ c = 2{e^{4\ln k}} - 1 \\\

We can solve the value of c further by using the property of log : m(lnn)=ln(nm)m(\ln n) = \ln ({n^m})
Here m=4,n=km = 4,n = k
4lnk=lnk4\Rightarrow 4\ln k = \ln {k^4}
So, the value of c becomes
c=2elnk41c = 2{e^{\ln {k^4}}} - 1
Since, log and exponent cancel each other, we get
c=2(k4)1c = 2({k^4}) - 1
Now substituting the values of a, b and c in formula to find the roots i.e. b±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}

(42k)±(42k)24×1×(2k41)2×1 42k±32k28k4+42  \Rightarrow \dfrac{{ - ( - 4\sqrt 2 k) \pm \sqrt {{{( - 4\sqrt 2 k)}^2} - 4 \times 1 \times (2{k^4} - 1)} }}{{2 \times 1}} \\\ \Rightarrow \dfrac{{4\sqrt 2 k \pm \sqrt {32{k^2} - 8{k^4} + 4} }}{2} \\\

Take common the value 4 inside the square root.
42k±4(8k22k4+1)2\Rightarrow \dfrac{{4\sqrt 2 k \pm \sqrt {4(8{k^2} - 2{k^4} + 1)} }}{2}
Bring outside the value of square root of 4 i.e. 2
42k±28k22k4+12\Rightarrow \dfrac{{4\sqrt 2 k \pm 2\sqrt {8{k^2} - 2{k^4} + 1} }}{2}
Cancel 2 from both numerator and denominator.
22k±8k22k4+1\Rightarrow 2\sqrt 2 k \pm \sqrt {8{k^2} - 2{k^4} + 1}
S, our two roots are

α=22k+8k22k4+1 β=22k8k22k4+1  \alpha = 2\sqrt 2 k + \sqrt {8{k^2} - 2{k^4} + 1} \\\ \beta = 2\sqrt 2 k - \sqrt {8{k^2} - 2{k^4} + 1} \\\

Now we substitute the values of α,β\alpha ,\beta in equation α2+β2=66{\alpha ^2} + {\beta ^2} = 66.
(22k+8k22k4+1)2+(22k8k22k4+1)2=66\Rightarrow {\left( {2\sqrt 2 k + \sqrt {8{k^2} - 2{k^4} + 1} } \right)^2} + {\left( {2\sqrt 2 k - \sqrt {8{k^2} - 2{k^4} + 1} } \right)^2} = 66
Using the formula (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab and (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab we solve LHS of equation.
The first term is solved as

(22k+8k22k4+1)2=(22k)2+(8k22k4+1)2+2(22k)(8k22k4+1) (22k+8k22k4+1)2=8k2+8k22k4+1+42k8k22k4+1 (22k+8k22k4+1)2=16k22k4+1+42k8k22k4+1  \Rightarrow {\left( {2\sqrt 2 k + \sqrt {8{k^2} - 2{k^4} + 1} } \right)^2} = {(2\sqrt 2 k)^2} + {(\sqrt {8{k^2} - 2{k^4} + 1} )^2} + 2(2\sqrt 2 k)(\sqrt {8{k^2} - 2{k^4} + 1} ) \\\ \Rightarrow {\left( {2\sqrt 2 k + \sqrt {8{k^2} - 2{k^4} + 1} } \right)^2} = 8{k^2} + 8{k^2} - 2{k^4} + 1 + 4\sqrt 2 k\sqrt {8{k^2} - 2{k^4} + 1} \\\ \Rightarrow {\left( {2\sqrt 2 k + \sqrt {8{k^2} - 2{k^4} + 1} } \right)^2} = 16{k^2} - 2{k^4} + 1 + 4\sqrt 2 k\sqrt {8{k^2} - 2{k^4} + 1} \\\

And second term is solved as

(22k8k22k4+1)2=(22k)2+(8k22k4+1)22(22k)(8k22k4+1) (22k8k22k4+1)2=8k2+8k22k4+142k8k22k4+1 (22k8k22k4+1)2=16k22k4+142k8k22k4+1  \Rightarrow {\left( {2\sqrt 2 k - \sqrt {8{k^2} - 2{k^4} + 1} } \right)^2} = {(2\sqrt 2 k)^2} + {(\sqrt {8{k^2} - 2{k^4} + 1} )^2} - 2(2\sqrt 2 k)(\sqrt {8{k^2} - 2{k^4} + 1} ) \\\ \Rightarrow {\left( {2\sqrt 2 k - \sqrt {8{k^2} - 2{k^4} + 1} } \right)^2} = 8{k^2} + 8{k^2} - 2{k^4} + 1 - 4\sqrt 2 k\sqrt {8{k^2} - 2{k^4} + 1} \\\ \Rightarrow {\left( {2\sqrt 2 k - \sqrt {8{k^2} - 2{k^4} + 1} } \right)^2} = 16{k^2} - 2{k^4} + 1 - 4\sqrt 2 k\sqrt {8{k^2} - 2{k^4} + 1} \\\

Adding both terms we get LHS of the equation

16k22k4+1+42k8k22k4+1+16k22k4+142k8k22k4+1 16k22k4+1+16k22k4+1 32k24k4+2  \Rightarrow 16{k^2} - 2{k^4} + 1 + 4\sqrt 2 k\sqrt {8{k^2} - 2{k^4} + 1} + 16{k^2} - 2{k^4} + 1 - 4\sqrt 2 k\sqrt {8{k^2} - 2{k^4} + 1} \\\ \Rightarrow 16{k^2} - 2{k^4} + 1 + 16{k^2} - 2{k^4} + 1 \\\ \Rightarrow 32{k^2} - 4{k^4} + 2 \\\

Now equating LHS to RHS we get
32k24k4+2=66\Rightarrow 32{k^2} - 4{k^4} + 2 = 66
Shifting all constants to one side of the equation

32k24k4=662 32k24k4=64  \Rightarrow 32{k^2} - 4{k^4} = 66 - 2 \\\ \Rightarrow 32{k^2} - 4{k^4} = 64 \\\

Take 4 common from terms on LHS of the equation
4(8k2k4)=16×4\Rightarrow 4(8{k^2} - {k^4}) = 16 \times 4
Cancel out same terms from both sides of the equation

8k2k4=16 8k2k416=0  \Rightarrow 8{k^2} - {k^4} = 16 \\\ \Rightarrow 8{k^2} - {k^4} - 16 = 0 \\\

Shift all the terms to one side of the equation.
k4+168k2=0\Rightarrow {k^4} + 16 - 8{k^2} = 0
This can be written as
(k2)2+(4)22(k2)(4)=0\Rightarrow {({k^2})^2} + {(4)^2} - 2({k^2})(4) = 0
Comparing to the formula (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab we get (k2)2+(4)22(k2)(4)=(k24){({k^2})^2} + {(4)^2} - 2({k^2})(4) = ({k^2} - 4).

(k24)=0 k2=4  \Rightarrow ({k^2} - 4) = 0 \\\ \Rightarrow {k^2} = 4 \\\

Taking square root on both sides
k2=4\Rightarrow \sqrt {{k^2}} = \sqrt 4
Cancel out square root by square power
k=±2\Rightarrow k = \pm 2
Now substitute the value of k in the equation of roots.
Case 1: When k=2k = 2

α=22×2+8(2)22(2)4+1 α=42+3232+1 α=42+1 α=42+1  \Rightarrow \alpha = 2\sqrt 2 \times 2 + \sqrt {8{{(2)}^2} - 2{{(2)}^4} + 1} \\\ \Rightarrow \alpha = 4\sqrt 2 + \sqrt {32 - 32 + 1} \\\ \Rightarrow \alpha = 4\sqrt 2 + \sqrt 1 \\\ \Rightarrow \alpha = 4\sqrt 2 + 1 \\\

And

β=22×28(2)22(2)4+1 β=423232+1 β=421 β=421  \Rightarrow \beta = 2\sqrt 2 \times 2 - \sqrt {8{{(2)}^2} - 2{{(2)}^4} + 1} \\\ \Rightarrow \beta = 4\sqrt 2 - \sqrt {32 - 32 + 1} \\\ \Rightarrow \beta = 4\sqrt 2 - \sqrt 1 \\\ \Rightarrow \beta = 4\sqrt 2 - 1 \\\

So, α=42+1,β=421\alpha = 4\sqrt 2 + 1,\beta = 4\sqrt 2 - 1
Case 2: When k=2k = - 2

α=22×(2)+8(2)22(2)4+1 α=42+3232+1 α=42+1 α=42+1  \Rightarrow \alpha = 2\sqrt 2 \times ( - 2) + \sqrt {8{{( - 2)}^2} - 2{{( - 2)}^4} + 1} \\\ \Rightarrow \alpha = - 4\sqrt 2 + \sqrt {32 - 32 + 1} \\\ \Rightarrow \alpha = - 4\sqrt 2 + \sqrt 1 \\\ \Rightarrow \alpha = - 4\sqrt 2 + 1 \\\

And

β=22×(2)8(2)22(2)4+1 β=423232+1 β=421 β=421  \Rightarrow \beta = 2\sqrt 2 \times ( - 2) - \sqrt {8{{(2)}^2} - 2{{(2)}^4} + 1} \\\ \Rightarrow \beta = - 4\sqrt 2 - \sqrt {32 - 32 + 1} \\\ \Rightarrow \beta = - 4\sqrt 2 - \sqrt 1 \\\ \Rightarrow \beta = - 4\sqrt 2 - 1 \\\

So, α=42+1,β=421\alpha = - 4\sqrt 2 + 1,\beta = - 4\sqrt 2 - 1
We see that if we take negative common from the values of case 2 then we get roots of case 1 with negative signs along them. So we can say that

α=42+1=(421)=β β=421=(42+1)=α  \alpha = - 4\sqrt 2 + 1 = - (4\sqrt 2 - 1) = - \beta \\\ \beta = - 4\sqrt 2 - 1 = - (4\sqrt 2 + 1) = - \alpha \\\

Roots are the same in both cases.
Now we find the value of α3+β3{\alpha ^3} + {\beta ^3}
We know the formula α3+β3=(α+β)33αβ(α+β){\alpha ^3} + {\beta ^3} = {(\alpha + \beta )^3} - 3\alpha \beta (\alpha + \beta )
Substituting the value of α=42+1,β=421\alpha = 4\sqrt 2 + 1,\beta = 4\sqrt 2 - 1we get
α3+β3=(42+1+421)33(42+1)(421)(42+1+421)\Rightarrow {\alpha ^3} + {\beta ^3} = {(4\sqrt 2 + 1 + 4\sqrt 2 - 1)^3} - 3(4\sqrt 2 + 1)(4\sqrt 2 - 1)(4\sqrt 2 + 1 + 4\sqrt 2 - 1)
Since we know (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}

α3+β3=(82)33(42)212)82 α3+β3=102423(321)82  \Rightarrow {\alpha ^3} + {\beta ^3} = {(8\sqrt 2 )^3} - 3\\{ {(4\sqrt 2 )^2} - {1^2})\\} 8\sqrt 2 \\\ \Rightarrow {\alpha ^3} + {\beta ^3} = 1024\sqrt 2 - 3(32 - 1)8\sqrt 2 \\\

Multiplying the terms in the bracket

α3+β3=102423(31)82 α3+β3=102427442 α3+β3=2802  \Rightarrow {\alpha ^3} + {\beta ^3} = 1024\sqrt 2 - 3(31)8\sqrt 2 \\\ \Rightarrow {\alpha ^3} + {\beta ^3} = 1024\sqrt 2 - 744\sqrt 2 \\\ \Rightarrow {\alpha ^3} + {\beta ^3} = 280\sqrt 2 \\\

So, the correct answer is “Option B”.

Note: Students can many times make the mistake of not solving the log part in the beginning which will make all our calculations way much complex. Also, many students make the mistake of not changing the sign of the value when taking it to the opposite side of the equation.