Solveeit Logo

Question

Question: If \(\alpha ,\beta \)are the complex cube roots of unity, then \({\alpha ^4} + {\beta ^4} + {\alpha ...

If α,β\alpha ,\beta are the complex cube roots of unity, then α4+β4+α1β1={\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}} =
a. 1 b. ω c. ω2 d. 0  a.{\text{ 1}} \\\ {\text{b}}{\text{. }}\omega \\\ {\text{c}}{\text{. }}{\omega ^2} \\\ {\text{d}}{\text{. 0}} \\\

Explanation

Solution

Hint: - Use α=ω, β=ω2\alpha = \omega ,{\text{ }}\beta = {\omega ^2}

As we know if α\alpha and β\beta are the complex cube roots of unity therefore
1+α+β=0................(1)1 + \alpha + \beta = 0................\left( 1 \right)
As we know cube roots of unity are 1,ω,ω21,\omega ,{\omega ^2}
Where ω\omega andω2{\omega ^2}are non-real complex cube roots of unity therefore
ω3=1........(2), 1+ω+ω2=0...............(3){\omega ^3} = 1........\left( 2 \right),{\text{ }}1 + \omega + {\omega ^2} = 0...............\left( 3 \right)
So, from equations (1) and (3)
α=ω, β=ω2\alpha = \omega ,{\text{ }}\beta = {\omega ^2}
Now given equation is α4+β4+α1β1{\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}}

ω4+(ω2)4+ω1(ω2)1 ω3.ω+ω8+ω1(ω2) ω3.ω+(ω3)2ω2+1ω3  \Rightarrow {\omega ^4} + {\left( {{\omega ^2}} \right)^4} + {\omega ^{ - 1}}{\left( {{\omega ^2}} \right)^{ - 1}} \\\ \Rightarrow {\omega ^3}.\omega + {\omega ^8} + {\omega ^{ - 1}}\left( {{\omega ^{ - 2}}} \right) \\\ \Rightarrow {\omega ^3}.\omega + {\left( {{\omega ^3}} \right)^2}{\omega ^2} + \dfrac{1}{{{\omega ^3}}} \\\

From equation (2)
ω3=1 1.ω+(1)2ω2+1 1+ω+ω2  {\omega ^3} = 1 \\\ \Rightarrow 1.\omega + {\left( 1 \right)^2}{\omega ^2} + 1 \\\ \Rightarrow 1 + \omega + {\omega ^2} \\\
From equation (3)
1+ω+ω2=0 α4+β4+α1β1=1+ω+ω2=0  1 + \omega + {\omega ^2} = 0 \\\ \Rightarrow {\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}} = 1 + \omega + {\omega ^2} = 0 \\\
Hence, option (d) is correct.
Note: - Whenever we face such types of problems the key concept is that always remember the condition of cube roots of unity which is stated above, then substitute the values in the given equation then simplify we will get the required answer.