Question
Question: If \(\alpha + \beta - \gamma = \pi,\) then\(\sin^{2}\alpha + \sin^{2}\beta - \sin^{2}\gamma =\)...
If α+β−γ=π, thensin2α+sin2β−sin2γ=
A
2sinαsinβcosγ
B
2cosαcosβcosγ
C
2sinαsinβsinγ
D
None of these
Answer
2sinαsinβcosγ
Explanation
Solution
We have α+β−γ=π.
Now sin2α+sin2β−sin2γ =sin2α+sin(β−γ)sin(β+γ)
=sin2α+sin(π−α)sin(β+γ) (∵α+β−γ=π)
=sin2α+sinαsin(β+γ)=sinα{sinα+sin(β+γ)}
=sinα{sin(π−β+γ)+sin(β+γ)}
=sinα{−sin(γ−β)+sin(γ+β)}
=sinα{2sinβcosγ}=2sinαsinβcosγ.