Solveeit Logo

Question

Question: If \(\alpha + \beta - \gamma = \pi,\) then\(\sin^{2}\alpha + \sin^{2}\beta - \sin^{2}\gamma =\)...

If α+βγ=π,\alpha + \beta - \gamma = \pi, thensin2α+sin2βsin2γ=\sin^{2}\alpha + \sin^{2}\beta - \sin^{2}\gamma =

A

2sinαsinβcosγ2\sin\alpha\sin\beta\cos\gamma

B

2cosαcosβcosγ2\cos\alpha\cos\beta\cos\gamma

C

2sinαsinβsinγ2\sin\alpha\sin\beta\sin\gamma

D

None of these

Answer

2sinαsinβcosγ2\sin\alpha\sin\beta\cos\gamma

Explanation

Solution

We have α+βγ=π.\alpha + \beta - \gamma = \pi.

Now sin2α+sin2βsin2γ\sin^{2}\alpha + \sin^{2}\beta - \sin^{2}\gamma =sin2α+sin(βγ)sin(β+γ)= \sin^{2}\alpha + \sin(\beta - \gamma)\sin(\beta + \gamma)

=sin2α+sin(πα)sin(β+γ)= \sin^{2}\alpha + \sin(\pi - \alpha)\sin(\beta + \gamma) (α+βγ=π)(\because\alpha + \beta - \gamma = \pi)

=sin2α+sinαsin(β+γ)=sinα{sinα+sin(β+γ)}= \sin^{2}\alpha + \sin\alpha\sin(\beta + \gamma) = \sin\alpha\{\sin\alpha + \sin(\beta + \gamma)\}

=sinα{sin(πβ+γ)+sin(β+γ)}= \sin\alpha\{\sin(\pi - \overline{\beta + \gamma)} + \sin(\beta + \gamma)\}

=sinα{sin(γβ)+sin(γ+β)}= \sin\alpha\{ - \sin(\gamma - \beta) + \sin(\gamma + \beta)\}

=sinα{2sinβcosγ}=2sinαsinβcosγ= \sin\alpha\{ 2\sin\beta\cos\gamma\} = 2\sin\alpha\sin\beta\cos\gamma.