Solveeit Logo

Question

Question: If $\alpha$ and $\beta$ are the zeroes of the polynomial $x^2 + 4x + 3$, form the polynom. whose zer...

If α\alpha and β\beta are the zeroes of the polynomial x2+4x+3x^2 + 4x + 3, form the polynom. whose zeroes are 1+βα1 + \frac{\beta}{\alpha} and 1+αβ1 + \frac{\alpha}{\beta}.

Answer

3x^2 - 16x + 16 = 0

Explanation

Solution

Solution Explanation

  1. For the quadratic x2+4x+3=0x^2 + 4x + 3 = 0, the sum and product of its roots are:
α+β=4,αβ=3.\alpha+\beta = -4,\quad \alpha\beta = 3.
  1. The new zeros are:
u=1+βα,v=1+αβ.u=1+\frac{\beta}{\alpha},\quad v=1+\frac{\alpha}{\beta}.
  1. Their sum is:
u+v=2+(βα+αβ)=2+α2+β2αβ.u+v = 2 + \left(\frac{\beta}{\alpha}+\frac{\alpha}{\beta}\right) = 2+\frac{\alpha^2+\beta^2}{\alpha\beta}.

Since

α2+β2=(α+β)22αβ=(4)223=166=10,\alpha^2+\beta^2 = (\alpha+\beta)^2-2\alpha\beta = (-4)^2-2\cdot3 = 16-6=10,

we get:

u+v=2+103=163.u+v = 2+\frac{10}{3} = \frac{16}{3}.
  1. Their product is:
uv=(1+βα)(1+αβ)=1+βα+αβ+1=2+α2+β2αβ=163.uv=\left(1+\frac{\beta}{\alpha}\right)\left(1+\frac{\alpha}{\beta}\right)= 1+\frac{\beta}{\alpha} +\frac{\alpha}{\beta} +1 = 2+\frac{\alpha^2+\beta^2}{\alpha\beta} = \frac{16}{3}.
  1. Hence, the required quadratic with roots uu and vv is:
x2(163)x+163=0.x^2 - \left(\frac{16}{3}\right)x + \frac{16}{3} = 0.

Multiplying through by 3 to eliminate the fractions gives:

3x216x+16=0.3x^2 - 16x + 16 = 0.

Answer

3x216x+16=0\boxed{3x^2 - 16x + 16 = 0}