Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If α\alpha and β\beta are the roots of x2+x+1=0x^2 + x + 1 = 0 then α16+β16\alpha^{16}+\beta^{16}=

A

0

B

1

C

-1

D

2

Answer

-1

Explanation

Solution

Given, equation is x2+x+1=0x^{2}+x+1=0
x=1±3i2\Rightarrow x=\frac{-1 \pm \sqrt{3} i}{2}
x=ω,ω2\Rightarrow x=\omega, \omega^{2}
Since, α\alpha and β\beta are the roots of x2+x+1=0x^{2}+x+1=0
α=ω\therefore \alpha=\omega and β=ω2\beta=\omega^{2}
Now, α16+β16=(ω)16+(ω2)16\alpha^{16}+\beta^{16} =(\omega)^{16}+\left(\omega^{2}\right)^{16}
=ω16+ω32=\omega^{16}+\omega^{32}
=ω+ω2(ω3=1)=\omega+\omega^{2} \,\,\,\,\left(\because \omega^{3}=1\right)
=1(1+ω+ω2=0)=-1 \,\,\,\,\,\,\, \left(\because 1+\omega+\omega^{2}=0\right)