Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If α\alpha and β\beta are the roots of x2ax+b2=0x^2 - ax + b^2 = 0, then α2+β2\alpha^2 + \beta^2 is equal to

A

a22b2a^2-2b^2

B

2a2b22a^2 -b^2

C

a2b2a^2 - b^2

D

a2+b2a^2 + b^2

Answer

a22b2a^2-2b^2

Explanation

Solution

The correct answer is A:a22b2a^2-2b^2
Given that, α\alpha and β\beta are the roots of x2ax+b2=0x^{2}-a x+b^{2}=0.
α+β=(a)1=a\alpha+\beta=\frac{-(-a)}{1}=a
and αβ=b21=b2\alpha \beta=\frac{b^{2}}{1}=b^{2}
(α+β)2=α2+β2+2αβ(\alpha+\beta)^2=\alpha^2+\beta^2+2\alpha\beta
Now, α2+β2=(α+β)22αβ\alpha^{2}+\beta^{2} =(\alpha+\beta)^{2}-2 \alpha \beta
\alpha^2+\beta^2$$=a^{2}-2 b^{2}