Question
Mathematics Question on Quadratic Equations
If α and β are the roots of x2+7x+3=0 and 3−4α2α,3−4β2β are the roots of ax2+bx+c=0 and GCD of a,b,c is 1 , then a+b+c=
A
11
B
0
C
243
D
81
Answer
81
Explanation
Solution
Let 3−4α2α=y
⇒2α=3y−4αy
⇒α(2+4y)=3y
⇒α=2+4y3y
∵α is root of quadratic equation
x2+7x+3=0,
So, (2+4y3y)2+7(2+4y3y)+3=0
⇒9y2+84y2+42y+48y2+48y+12=0
⇒141y2+90y+12=0
⇒47y2+30y+4=0
∵y=3−4α2α is root of quadratic equation
ax2+bx+c=0.
∴a=47,b=30 and c=4 and GCD of 47,30,4 is 1.
∴a+b+c=47+30+4=81