Solveeit Logo

Question

Mathematics Question on Quadratic Equations

If α\alpha and β\beta are the roots of x2+7x+3=0x^{2}+7 x+3=0 and 2α34α,2β34β\frac{2 \alpha}{3-4 \alpha}, \frac{2 \beta}{3-4 \beta} are the roots of ax2+bx+c=0a x^{2}+b x+c=0 and GCDGCD of a,b,ca, b, c is 11 , then a+b+c=a+b+c=

A

11

B

0

C

243

D

81

Answer

81

Explanation

Solution

Let 2α34α=y\frac{2 \alpha}{3-4 \alpha}=y
2α=3y4αy\Rightarrow 2 \alpha=3 y-4 \alpha y
α(2+4y)=3y\Rightarrow \alpha(2+4 y)=3 y
α=3y2+4y\Rightarrow \alpha=\frac{3 y}{2+4 y}
α\because \alpha is root of quadratic equation
x2+7x+3=0x^{2}+7 x+3=0,
So, (3y2+4y)2+7(3y2+4y)+3=0\left(\frac{3 y}{2+4 y}\right)^{2}+7\left(\frac{3 y}{2+4 y}\right)+3=0
9y2+84y2+42y+48y2+48y+12=0\Rightarrow 9 y^{2}+84 y^{2}+42 y+48 y^{2}+48 y+12=0
141y2+90y+12=0\Rightarrow 141 y^{2}+90 y+12=0
47y2+30y+4=0\Rightarrow 47 y^{2}+30 y+4=0
y=2α34α\because y=\frac{2 \alpha}{3-4 \alpha} is root of quadratic equation
ax2+bx+c=0.a x^{2}+b x+ c=0 .
a=47,b=30\therefore a=47, b=30 and c=4c=4 and GCDG C D of 47,30,447,30,4 is 1.1 .
a+b+c=47+30+4=81\therefore a +b +c=47+30+4=81