Solveeit Logo

Question

Question: If \(\alpha \ and\ \beta \) are the roots of \({{x}^{2}}+5x+4=0\), then the equation whose roots are...

If α and β\alpha \ and\ \beta are the roots of x2+5x+4=0{{x}^{2}}+5x+4=0, then the equation whose roots are α+23 and β+23\dfrac{\alpha +2}{3}\ and\ \dfrac{\beta +2}{3}, is
A. 9x2+3x+2=09{{x}^{2}}+3x+2=0
B. 9x23x2=09{{x}^{2}}-3x-2=0
C. 9x2+3x2=09{{x}^{2}}+3x-2=0
D. 9x23x+2=09{{x}^{2}}-3x+2=0

Explanation

Solution

Hint: We will be using the concept of quadratic equation to solve the problem. We will be using the concepts of sum of zeroes and product of zeroes of a quadratic equation to further simplify the solution. We will be using the method of representing a quadratic polynomial with the help of its roots.

Complete step-by-step solution -
Now, we have been given that α and β\alpha \ and\ \beta are the roots of a quadratic equation x2+5x+4=0{{x}^{2}}+5x+4=0.
Now, we know that if ax2+bx+c=0a{{x}^{2}}+bx+c=0 is a quadratic equation then,
sum of zeroes = ba product of zeroes = ca \begin{aligned} & \text{sum of zeroes = }\dfrac{-b}{a} \\\ & \text{product of zeroes = }\dfrac{c}{a} \\\ \end{aligned}
So, for f(x)=x2+5x+4=0f\left( x \right)={{x}^{2}}+5x+4=0. We have,
α+β = sum of zeroes = 5.......(1) αβ = Product of zeroes = 4........(2) \begin{aligned} & \alpha +\beta \ =\ \text{sum of zeroes = }-5.......\left( 1 \right) \\\ & \alpha \beta \ =\ \text{Product of zeroes = 4}........\left( 2 \right) \\\ \end{aligned}
Now, we know that a quadratic polynomial with α and β\alpha \ and\ \beta as roots can be represented as,
k(x2(α+β)x+αβ) where kRk\left( {{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta \right)\ where\ k\in R.
Now, for α+23 and β+23\dfrac{\alpha +2}{3}\ and\ \dfrac{\beta +2}{3} as roots the quadratic polynomial will be,
k(x2(α+23+β+23)x+(α+2)(β+2)3×3) =k(x2(α+β+43)x+αβ+2(α+β)+43×3) =k(x2(α+β+43)x+αβ+2(α+β)+43) \begin{aligned} & k\left( {{x}^{2}}-\left( \dfrac{\alpha +2}{3}+\dfrac{\beta +2}{3} \right)x+\dfrac{\left( \alpha +2 \right)\left( \beta +2 \right)}{3\times 3} \right) \\\ & =k\left( {{x}^{2}}-\left( \dfrac{\alpha +\beta +4}{3} \right)x+\dfrac{\alpha \beta +2\left( \alpha +\beta \right)+4}{3\times 3} \right) \\\ & =k\left( {{x}^{2}}-\left( \dfrac{\alpha +\beta +4}{3} \right)x+\dfrac{\alpha \beta +2\left( \alpha +\beta \right)+4}{3} \right) \\\ \end{aligned}
Now, we will substitute the value of α+β and αβ\alpha +\beta \ and\ \alpha \beta from (2) and (1). So, we have,
=k(x2(5+43)x+(4+2(5)+43×3)) =k(x2+x3+29) \begin{aligned} & =k\left( {{x}^{2}}-\left( \dfrac{-5+4}{3} \right)x+\left( \dfrac{4+2\left( -5 \right)+4}{3\times 3} \right) \right) \\\ & =k\left( {{x}^{2}}+\dfrac{x}{3}+\dfrac{-2}{9} \right) \\\ \end{aligned}
Since, the polynomial is the same for any value of kRk\in R. So, we take k = 9.
The equation is 9x2+3x2=09{{x}^{2}}+3x-2=0
Hence, the correct option is (B).

Note: To solve these types of questions it is important to know the concepts of sum of roots and product of roots. Also it is to be noted that a quadratic polynomial with α and β\alpha \ and\ \beta as roots can be written as,
k(x2(α+β)x+αβ) where kRk\left( {{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta \right)\ where\ k\in R