Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If α\alpha and β\beta are the roots of the equation x2x+1=0x^{2} - x + 1 = 0, then α2009+β2009=\alpha^{2009} + \beta^{2009} =

A

-1

B

1

C

2

D

-2

Answer

1

Explanation

Solution

x2x+1=0x=1±142x^{2} - x + 1 = 0 \quad\Rightarrow x = \frac{1\pm\sqrt{1-4}}{2} x=1±3i2x = \frac{1\pm \sqrt{3} i}{2} α=12+i32,β=12i32\alpha = \frac{1}{2} + i \frac{\sqrt{3}}{2},\quad \beta = \frac{1}{2} - \frac{i\sqrt{3}}{2} α=cosπ3+isinπ3,β=cosπ3isinπ3\alpha =cos\frac{\pi }{3} + i\,sin \frac{\pi }{3},\quad\beta = cos\frac{\pi }{3} - i\,sin \frac{\pi }{3} α2009+β2009=2cos2009(π3)\alpha^{2009} + \beta^{2009} = 2cos\, 2009 \left(\frac{\pi }{3}\right) =2cos[668π+π+2π3]=2cos(π+2π3)= 2cos\left[668\pi+\pi +\frac{2\pi }{3}\right] = 2cos \left(\pi +\frac{2\pi }{3}\right) =2cos2π3=2(12)=1= - 2cos \frac{2\pi }{3} = -2\left(-\frac{1}{2}\right) = 1