Solveeit Logo

Question

Mathematics Question on Quadratic Equations

If α\alpha and β\beta are the roots of the equation x24x+5=0x^2 - 4x + 5 = 0. then the quadratic equation whose roots are α2+β\alpha^2 + \beta and α+β2\alpha + \beta^2 is

A

x2+10x+34=0x^2 + 10x + 34 = 0

B

x210x+34=0x^2 - 10x + 34 = 0

C

x210x34=0x^2 - 10x - 34 = 0

D

x2+10x34=0x^2 + 10x - 34 = 0

Answer

x210x+34=0x^2 - 10x + 34 = 0

Explanation

Solution

Since, α\alpha and β\beta are roots of the quadratic equation
x24x+5=0x^{2}-4 x+5=0
So, α+β=4\alpha+\beta=4 and αβ=5\alpha \beta=5 ... (i)
Now, (α2+β)+(α+β2)=(α2+β2)+(α+β)\left(\alpha^{2}+\beta\right)+\left(\alpha+\beta^{2}\right)=\left(\alpha^{2}+\beta^{2}\right)+(\alpha+\beta)
=(α+β)22αβ+(α+β)=(\alpha+\beta)^{2}-2 \alpha \beta+(\alpha+\beta)
=1610+4=10=16-10+4=10
and (α2+β)(α+β2)=α3+α2β2+βα+β3\left(\alpha^{2}+\beta\right)\left(\alpha+\beta^{2}\right)=\alpha^{3}+\alpha^{2} \beta^{2}+\beta \alpha+\beta^{3}
=α3+β3+αβ(αβ+1)=\alpha^{3}+\beta^{3}+\alpha \beta(\alpha \beta+1)
=(α+β)(α2+β2αβ)+αβ(αβ+1)=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)+\alpha \beta(\alpha \beta+1)
=(α+β)[(α+β)23αβ]+αβ(αβ+1)=(\alpha+\beta)\left[(\alpha+\beta)^{2}-3 \alpha \beta\right]+\alpha \beta(\alpha \beta+1)
=4[1615]+5(5+1)=4[16-15]+5(5+1)
=4+30=34=4+30=34
So, the quadratic equation whose roots are
(α2+β) and (α+β2)\left(\alpha^{2}+\beta\right) \text { and }\left(\alpha+\beta^{2}\right) is
x2(α2+β+α+β2)x+(α2+β)(α+β2)=0x^{2}-\left(\alpha^{2}+\beta+\alpha+\beta^{2}\right) x+\left(\alpha^{2}+\beta\right)\left(\alpha+\beta^{2}\right)=0
x210x+34=0\Rightarrow x^{2}-10 x+34=0