Solveeit Logo

Question

Mathematics Question on Quadratic Equations

If αandβ\alpha \, and \, \beta are the roots of the equation ax+bx+c=0, then the value of α3+β3\alpha^{3} \, + \, \beta^{3} is

A

3abc+b3a3\frac{3abc \, + \, b^{3}}{a^3}

B

a3+b33abc\frac{a^3 \, + \, b^3}{3abc}

C

3abcb3a3\frac{3abc \, - \, b^3}{a^3}

D

(3abc+b3)a3\frac{-(3abc \, + \, b^3)}{a^3}

Answer

3abcb3a3\frac{3abc \, - \, b^3}{a^3}

Explanation

Solution

Given : α\alpha & β\beta are roots of equation
ax + bx + c = 0
α+β=ba&αβ=ca\therefore \, \, \alpha \, + \beta \, = -\frac{b}{a} \, \& \, \alpha \beta \, = \, \frac{c}{a}
Now, α3+β3=(α+β)33αβ(α+β)\alpha^3 + \beta^3 \, =(\alpha \, + \beta)^3 - \, 3\alpha\beta(\alpha+\beta)
α3+β3=(ba)33ca(ba)\Rightarrow \, \alpha^3+\beta^3 = \bigg(-\frac{b}{a}\bigg)^3 \, -3 \frac{c}{a} \bigg(-\frac{b}{a}\bigg)
α3+β3=b2a3+3bca2\Rightarrow \, \, \alpha^3 + \beta^3 \, = \, -\frac{b^2}{a^3} + \frac{3bc}{a^2}
α3+β3=b3+3abca3\Rightarrow \, \, \, \alpha^3 + \beta^3 \, = \, \frac{-b^3 \, + \, 3abc}{a^3}