Question
Mathematics Question on Quadratic Equations
If αandβ are the roots of the equation ax+bx+c=0, then the value of α3+β3 is
A
a33abc+b3
B
3abca3+b3
C
a33abc−b3
D
a3−(3abc+b3)
Answer
a33abc−b3
Explanation
Solution
Given : α & β are roots of equation
ax + bx + c = 0
∴α+β=−ab&αβ=ac
Now, α3+β3=(α+β)3−3αβ(α+β)
⇒α3+β3=(−ab)3−3ac(−ab)
⇒α3+β3=−a3b2+a23bc
⇒α3+β3=a3−b3+3abc