Solveeit Logo

Question

Question: If \(\alpha\) and \(\beta\) are different complex numbers with \(|\beta| = 1,\) then \(\left| \frac{...

If α\alpha and β\beta are different complex numbers with β=1,|\beta| = 1, then βα1αˉβ\left| \frac{\beta - \alpha}{1 - \bar{\alpha}\beta} \right| is equal to

A

0

B

½

C

1

D

2

Answer

1

Explanation

Solution

Sol.βα1αˉβ=βαββˉαˉβ=βαβ(βˉαˉ),=1ββα(βα)=1β=1{z=zˉ}\left| \frac{\beta - \alpha}{1 - \bar{\alpha}\beta} \right| = \left| \frac{\beta - \alpha}{\beta\bar{\beta} - \bar{\alpha}\beta} \right| = \left| \frac{\beta - \alpha}{\beta(\bar{\beta} - \bar{\alpha})} \right|, = \frac{1}{|\beta|}\left| \frac{\beta - \alpha}{\overline{(\beta - \alpha})} \right| = \frac{1}{|\beta|} = 1\{\because|z| = |\bar{z}|\}