Solveeit Logo

Question

Question: If \(\alpha \) and \(\beta \) are different complex numbers with \(\left| \beta \right|=1\), then th...

If α\alpha and β\beta are different complex numbers with β=1\left| \beta \right|=1, then the value of (βα)(1αβ)\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right| is
(a) 0
(b) 1
(c) 2
(d) 3

Explanation

Solution

We start solving the problem by assuming the term (βα)(1αβ)2{{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}} and make use of the property of complex numbers z2=z.z{{\left| z \right|}^{2}}=z.\overline{z}. We then make use of the properties of complex numbers (ab)=ab\overline{\left( \dfrac{a}{b} \right)}=\dfrac{\overline{a}}{\overline{b}}, (ab)=ab\overline{\left( a-b \right)}=\overline{a}-\overline{b}, ab=a.b\overline{ab}=\overline{a}.\overline{b}, 1=1\overline{1}=1 and a=a\overline{\overline{a}}=a to proceed through the problem. We then make use of the result β=1\left| \beta \right|=1 and perform necessary calculations to get the value (βα)(1αβ)2{{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}} which later gives the value of (βα)(1αβ)\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|.

Complete step-by-step answer:
According to the problem, we are given that α\alpha and β\beta are different complex numbers with β=1\left| \beta \right|=1. We need to find the value of (βα)(1αβ)\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|.
Let us assume (βα)(1αβ)2{{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}. We know that z2=z.z{{\left| z \right|}^{2}}=z.\overline{z}.
So, we get (βα)(1αβ)2=((βα)(1αβ)).((βα)(1αβ)){{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right).\overline{\left( \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right)} ---(1).
We know that (ab)=ab\overline{\left( \dfrac{a}{b} \right)}=\dfrac{\overline{a}}{\overline{b}}. We muse this result in equation (1).
(βα)(1αβ)2=((βα)(1αβ)).((βα)(1αβ))\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right).\left( \dfrac{\overline{\left( \beta -\alpha \right)}}{\overline{\left( 1-\overline{\alpha }\beta \right)}} \right) ---(2).
We know that (ab)=ab\overline{\left( a-b \right)}=\overline{a}-\overline{b}. We muse this result in equation (2)
(βα)(1αβ)2=(βα1αβ).(βα1αβ)\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta -\alpha }{1-\overline{\alpha }\beta } \right).\left( \dfrac{\overline{\beta }-\overline{\alpha }}{\overline{1}-\overline{\overline{\alpha }\beta }} \right) ---(3).
We know that ab=a.b\overline{ab}=\overline{a}.\overline{b} and 1=1\overline{1}=1. We use this result in equation (3)
(βα)(1αβ)2=(βα1αβ).(βα1αβ)\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta -\alpha }{1-\overline{\alpha }\beta } \right).\left( \dfrac{\overline{\beta }-\overline{\alpha }}{1-\overline{\overline{\alpha }}\overline{\beta }} \right) ---(4).
We know that a=a\overline{\overline{a}}=a. We muse this result in equation (4)
(βα)(1αβ)2=(βα1αβ).(βα1αβ)\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta -\alpha }{1-\overline{\alpha }\beta } \right).\left( \dfrac{\overline{\beta }-\overline{\alpha }}{1-\alpha \overline{\beta }} \right).
(βα)(1αβ)2=(βββααβ+αα1αβαβ+αβαβ)\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta \overline{\beta }-\beta \overline{\alpha }-\alpha \overline{\beta }+\alpha \overline{\alpha }}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+\overline{\alpha }\beta \alpha \overline{\beta }} \right) ---(5).
We know that z2=z.z{{\left| z \right|}^{2}}=z.\overline{z}. We muse this result in equation (5)
(βα)(1αβ)2=(β2βααβ+α21αβαβ+ααββ)\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{{{\left| \beta \right|}^{2}}-\beta \overline{\alpha }-\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+\overline{\alpha }\alpha \beta \overline{\beta }} \right).
From the problem, we are given that β=1\left| \beta \right|=1.
(βα)(1αβ)2=(12βααβ+α21αβαβ+α2β2)\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{{{1}^{2}}-\beta \overline{\alpha }-\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}{{\left| \beta \right|}^{2}}} \right).
(βα)(1αβ)2=(1αβαβ+α21αβαβ+(α2×12))\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+\left( {{\left| \alpha \right|}^{2}}\times {{1}^{2}} \right)} \right).
(βα)(1αβ)2=(1αβαβ+α21αβαβ+α2)\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}} \right).
(βα)(1αβ)2=1\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=1.
(βα)(1αβ)=1\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=1.
So, we have found the value of (βα)(1αβ)\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right| as 1.

So, the correct answer is “Option (b)”.

Note: We can see that the given problem contains good amount of calculation so, we need to perform each step carefully. We can also solve this problem as shown below:
We are given β=1\left| \beta \right|=1 so, we get β2=1{{\left| \beta \right|}^{2}}=1. We know that z2=z.z{{\left| z \right|}^{2}}=z.\overline{z}.
So, we get β.β=1β=1β\beta .\overline{\beta }=1\Leftrightarrow \overline{\beta }=\dfrac{1}{\beta } ---(6).
We know that ab=ab\left| \dfrac{a}{b} \right|=\dfrac{\left| a \right|}{\left| b \right|}.
(βα)(1αβ)=βα1αβ\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \beta -\alpha \right|}{\left| 1-\overline{\alpha }\beta \right|}.
(βα)(1αβ)=(β)(1αβ)1αβ\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \left( \beta \right)\left( 1-\dfrac{\alpha }{\beta } \right) \right|}{\left| 1-\overline{\alpha }\beta \right|} ---(7).
Let us substitute equation (6) in equation (7).
(βα)(1αβ)=(β)(1αβ)1αβ\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \left( \beta \right)\left( 1-\alpha \overline{\beta } \right) \right|}{\left| 1-\overline{\alpha }\beta \right|}.
We know that a.b=ab\left| a.b \right|=\left| a \right|\left| b \right|.
(βα)(1αβ)=β1αβ1αβ\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \beta \right|\left| 1-\alpha \overline{\beta } \right|}{\left| 1-\overline{\alpha }\beta \right|}.
(βα)(1αβ)=1×1αβ1αβ\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{1\times \left| 1-\alpha \overline{\beta } \right|}{\left| 1-\overline{\alpha }\beta \right|}.
(βα)(1αβ)=1αβ1αβ\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \overline{1-\overline{\alpha }\beta } \right|}{\left| 1-\overline{\alpha }\beta \right|}.
Let us assume z=1αβz=1-\overline{\alpha }\beta .
(βα)(1αβ)=zz\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \overline{z} \right|}{\left| z \right|}.
We know that z=z\left| z \right|=\left| \overline{z} \right|.
(βα)(1αβ)=1\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=1.