Solveeit Logo

Question

Question: If \(\alpha \) and \(\beta \) are different complex number with \(\left| \alpha \right| = 1\), then ...

If α\alpha and β\beta are different complex number with α=1\left| \alpha \right| = 1, then what is αβ1αβ\left| {\dfrac{{\alpha - \beta }}{{1 - \alpha \overline \beta }}} \right| equal to?
A. β\left| \beta \right|
B. 2
C. 1
D. 0

Explanation

Solution

Hint: Here we will use the conjugate of the given complex numbers to solve.

Complete step-by-step answer:
Multiplying by α\overline \alpha on numerator and denominator, we get
(αβ)α(1αβ)α=(αβ)ααααβ\left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{(1 - \alpha \overline \beta )\overline \alpha }}} \right| = \left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{\overline \alpha - \alpha \overline \alpha \overline \beta }}} \right|
We know that
z.z=z2 αα=α2=1 (αβ)α(αβ)=(αβ)(αβ)α  z.\overline z = {\left| z \right|^2} \\\ \overline \alpha \alpha = {\left| \alpha \right|^2} = 1 \\\ \left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{(\overline \alpha - \overline \beta )}}} \right| = \left| {\dfrac{{(\alpha - \beta )}}{{(\overline \alpha - \overline \beta )}}} \right|\left| {\overline \alpha } \right| \\\
As we know z=z\left| z \right| = \left| {\overline z } \right|
Therefore αβ=αβ\left| {\alpha - \beta } \right| = \left| {\overline {\alpha - \beta } } \right|
So it gets cancel out,
α=α=1\left| {\overline \alpha } \right| = \left| \alpha \right| = 1

Note: For modulus type questions in complex numbers, we have to simplify using conjugate and using property of modulus.