Question
Question: If \[{{\alpha }_{1}},{{\alpha }_{2}},{{\alpha }_{3}},............,{{\alpha }_{n}}\] are the roots of...
If α1,α2,α3,............,αn are the roots of the equation xn+p1xn−1+p2xn−2+............+pn−1x+pn=0 , p1,p2,.......pn being real, prove that
(1+α12)(1+α12)...(1+α12)=(1−p2+p4+......)2+(p1−p3+p5....)2.
Solution
First of all, put the value of x=i in the equation xn+p1xn−1+p2xn−2+............+pn−1x+pn=0 . We know that i2=−1 . Now, substitute i2 by -1. Then, square the LHS and RHS of the equation {{\left\\{ i\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right) \right\\}}^{2}}={{\left\\{ -\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right) \right\\}}^{2}} and substitute i2 by -1. Now, get the value of (1−p2+p4+...........)2+(p1−p3+p5+..........)2 . Take α1=α2=α3=............=αn=i and then square it. Again, substitute i2 by -1 and then, add 1 to it. Now, get the value of (1+α12)(1+α12)...(1+α12) . Compare the value of the equation (1−p2+p4+...........)2+(p1−p3+p5+..........)2 and (1+α12)(1+α12)...(1+α12) . Now, solve it further and prove the required equation.
Complete step-by-step solution:
According to the question, it is given that we have an equation
xn+p1xn−1+p2xn−2+............+pn−1x+pn=0 ……………………………………………..(1)
The roots of the above equation are α1,α2,α3,............,αn ……………………………………(2)
Now, on putting the value of x=i in equation (1), we get
in+p1in−1+p2in−2+............+pn−1i+pn=0 ……………………………………..(3)
Now, on taking the term in−1 as common in the equation (3), we get