Solveeit Logo

Question

Mathematics Question on Straight lines

If algebraic sum of distances of a variable line from points (2,0)(2,0) , (0,2)(0,2) and (22)(-2- 2) is zero, then the line passes through the fixed point

A

(1,1)(-1,-1)

B

(1,1)(1,1)

C

(2,2)(2,2)

D

(0,0)(0,0)

Answer

(1,1)(1,1)

Explanation

Solution

Let the variable line be ax+by+c=0a x+b y+c=0 Given, the algebraic sum of the perpendicular from the points (2,0),(0,2)(2,0),(0,2) and (1,1)(1,1) to this line is zero 2×a+b×0+ca2+b2+a×0+b×2+ca2+b2+a×1+b×1+ca2+b2=0\therefore\left|\frac{2 \times a + b \times 0 + c }{\sqrt{ a ^{2}+ b ^{2}}}\right|+\left|\frac{ a \times 0 + b \times 2 + c }{\sqrt{ a ^{2}+ b ^{2}}}\right|+\left|\frac{ a \times 1 + b \times 1 + c }{\sqrt{ a ^{2}+ b ^{2}}}\right|= 0
±(2a+ca2+b2)±(2b+ca2+b2)±(a+b+ca2+b2)=0\Rightarrow \pm\left(\frac{2 a + c }{\sqrt{ a ^{2}+ b ^{2}}}\right) \pm\left(\frac{2 b + c }{\sqrt{ a ^{2}+ b ^{2}}}\right) \pm\left(\frac{ a + b + c }{\sqrt{ a ^{2}+ b ^{2}}}\right)=0
2a+c+2b+c+a+b+c=0\Rightarrow 2 a + c + 2 b + c + a + b + c = 0
3a+3b+3c=0\Rightarrow 3 a +3 b +3 c = 0
a+b+c=0\Rightarrow a + b + c = 0
This is a linear relation between a,ba , b and cc. So, the equation ax+by+c=0a x+b y+c=0 represents a family of straight line passing through a fixed point. Comparing ax+by+c=0a x+b y+c=0 and a+b+c=0a+b+c=0 We obtain The coordinates of fixed point are (1,1)(1,1).