Question
Question: If \(a\cos\theta + b\sin\theta = m\) and \(a\sin\theta - b\cos\theta = n,\) then \(a^{2} + b^{2} =\)...
If acosθ+bsinθ=m and asinθ−bcosθ=n, then a2+b2=
A
m+n
B
m2−n2
C
m2+n2
D
None of these
Answer
m2+n2
Explanation
Solution
Given that acosθ+bsinθ=mand asinθ−bcosθ=n.
Squaring and adding, we get
(acosθ+bsinθ)2+(asinθ−bcosθ)2=m2+n2
⇒a2(cos2θ+sin2θ)+b2(cos2θ+sin2θ)+2ab(cosθsinθ−sinθcosθ)=m2+n2
Hence, a2+b2=m2+n2.
Trick : Here we can guess that the value of a2+b2 is independent of θ, so put any suitable value of θ i.e. 2π, so that b=m and a=n. Hence a2+b2=m2+n2.
(Also check for other value of θ).