Solveeit Logo

Question

Question: If \(a\cos\theta + b\sin\theta = m\) and \(a\sin\theta - b\cos\theta = n,\) then \(a^{2} + b^{2} =\)...

If acosθ+bsinθ=ma\cos\theta + b\sin\theta = m and asinθbcosθ=n,a\sin\theta - b\cos\theta = n, then a2+b2=a^{2} + b^{2} =

A

m+nm + n

B

m2n2m^{2} - n^{2}

C

m2+n2m^{2} + n^{2}

D

None of these

Answer

m2+n2m^{2} + n^{2}

Explanation

Solution

Given that acosθ+bsinθ=ma\cos\theta + b\sin\theta = mand asinθbcosθ=n.a\sin\theta - b\cos\theta = n.

Squaring and adding, we get

(acosθ+bsinθ)2+(asinθbcosθ)2=m2+n2(a\cos\theta + b\sin\theta)^{2} + (a\sin\theta - b\cos\theta)^{2} = m^{2} + n^{2}

a2(cos2θ+sin2θ)+b2(cos2θ+sin2θ)+2ab(cosθsinθsinθcosθ)=m2+n2\Rightarrow a^{2}(\cos^{2}\theta + \sin^{2}\theta) + b^{2}(\cos^{2}\theta + \sin^{2}\theta) + 2ab(\cos\theta\sin\theta - \sin\theta\cos\theta) = m^{2} + n^{2}

Hence, a2+b2=m2+n2.a^{2} + b^{2} = m^{2} + n^{2}.

Trick : Here we can guess that the value of a2+b2a^{2} + b^{2} is independent of θ, so put any suitable value of θ i.e. π2,\frac{\pi}{2}, so that b=mb = m and a=n.a = n. Hence a2+b2=m2+n2.a^{2} + b^{2} = m^{2} + n^{2}.

(Also check for other value of θ).