Solveeit Logo

Question

Question: If \(A(\cos\alpha,\sin\alpha),\mspace{6mu} B(\sin\alpha, - \cos\alpha),C(1,\ 2)\) are the vertices o...

If A(cosα,sinα),6muB(sinα,cosα),C(1, 2)A(\cos\alpha,\sin\alpha),\mspace{6mu} B(\sin\alpha, - \cos\alpha),C(1,\ 2) are the vertices of a ΔABC\Delta ABC, then as α\alphavaries, the locus of its centroid is.

A

x2+y22x4y+1=0x^{2} + y^{2} - 2x - 4y + 1 = 0

B

3(x2+y2)2x4y+1=03(x^{2} + y^{2}) - 2x - 4y + 1 = 0

C

x2+y22x4y+3=0x^{2} + y^{2} - 2x - 4y + 3 = 0

D

None of these

Answer

3(x2+y2)2x4y+1=03(x^{2} + y^{2}) - 2x - 4y + 1 = 0

Explanation

Solution

Let (h,k)( h , k ) be the centroid of the triangle, then

h=cosα+sinα+13h = \frac { \cos \alpha + \sin \alpha + 1 } { 3 } and k=sinαcosα+23k = \frac { \sin \alpha - \cos \alpha + 2 } { 3 }

3h1=cosα+sinα\Rightarrow 3 h - 1 = \cos \alpha + \sin \alpha and 3k2=sinαcosα3 k - 2 = \sin \alpha - \cos \alpha

(3h1)2+(3k2)2=2\Rightarrow ( 3 h - 1 ) ^ { 2 } + ( 3 k - 2 ) ^ { 2 } = 2,

(squaring and adding)

9(h2+k2)6h12k+3=0\Rightarrow 9 \left( h ^ { 2 } + k ^ { 2 } \right) - 6 h - 12 k + 3 = 0

3(h2+k2)2h4k+1=0\Rightarrow 3 \left( h ^ { 2 } + k ^ { 2 } \right) - 2 h - 4 k + 1 = 0

\therefore Locus of (h,k)( h , k )is 3(x2+y2)2x4y+1=03 \left( x ^ { 2 } + y ^ { 2 } \right) - 2 x - 4 y + 1 = 0.