Question
Question: If $A=\begin{vmatrix}1 & -2 & 4 \\2 & 0 & 5 \\3 & 4 & -7\end{vmatrix}$, then the value of $a_{11}A_{...
If A=123−20445−7, then the value of a11A31−a12A32+a13A33 is:

A
2
B
-2
C
12
D
0
Answer
12
Explanation
Solution
For the matrix
A=123−20445−7,we are given the expression
a11A31−a12A32+a13A33.Recall that the cofactor Aij=(−1)i+jMij, where Mij is the minor obtained by eliminating the ith row and jth column.
For the third row cofactors:
- A31=(−1)3+1M31=M31.
- A32=(−1)3+2M32=−M32.
- A33=(−1)3+3M33=M33.
Thus, the given expression becomes:
a11M31−a12(−M32)+a13M33=a11M31+a12M32+a13M33.Now, compute the minors:
-
Minor M31 (remove row 3 and column 1):
M31=−2045=(−2)(5)−(4)(0)=−10. -
Minor M32 (remove row 3 and column 2):
M32=1245=(1)(5)−(4)(2)=5−8=−3. -
Minor M33 (remove row 3 and column 3):
M33=12−20=(1)(0)−(−2)(2)=0+4=4.
With the elements:
- a11=1
- a12=−2
- a13=4
Substitute the values:
Expression=1(−10)+(−2)(−3)+4(4)=−10+6+16=12.So, the value is 12.