Solveeit Logo

Question

Question: If $A=\begin{vmatrix}1 & -2 & 4 \\2 & 0 & 5 \\3 & 4 & -7\end{vmatrix}$, then the value of $a_{11}A_{...

If A=124205347A=\begin{vmatrix}1 & -2 & 4 \\2 & 0 & 5 \\3 & 4 & -7\end{vmatrix}, then the value of a11A31a12A32+a13A33a_{11}A_{31}-a_{12}A_{32}+a_{13}A_{33} is:

A

2

B

-2

C

12

D

0

Answer

12

Explanation

Solution

For the matrix

A=(124205347),A = \begin{pmatrix} 1 & -2 & 4 \\ 2 & 0 & 5 \\ 3 & 4 & -7 \end{pmatrix},

we are given the expression

a11A31a12A32+a13A33.a_{11}A_{31} - a_{12}A_{32} + a_{13}A_{33}.

Recall that the cofactor Aij=(1)i+jMijA_{ij} = (-1)^{i+j} M_{ij}, where MijM_{ij} is the minor obtained by eliminating the iith row and jjth column.

For the third row cofactors:

  • A31=(1)3+1M31=M31A_{31} = (-1)^{3+1} M_{31} = M_{31}.
  • A32=(1)3+2M32=M32A_{32} = (-1)^{3+2} M_{32} = -M_{32}.
  • A33=(1)3+3M33=M33A_{33} = (-1)^{3+3} M_{33} = M_{33}.

Thus, the given expression becomes:

a11M31a12(M32)+a13M33=a11M31+a12M32+a13M33.a_{11}M_{31} - a_{12}(-M_{32}) + a_{13}M_{33} = a_{11}M_{31} + a_{12}M_{32} + a_{13}M_{33}.

Now, compute the minors:

  1. Minor M31M_{31} (remove row 3 and column 1):

    M31=2405=(2)(5)(4)(0)=10.M_{31} = \begin{vmatrix} -2 & 4 \\ 0 & 5 \end{vmatrix} = (-2)(5) - (4)(0) = -10.
  2. Minor M32M_{32} (remove row 3 and column 2):

    M32=1425=(1)(5)(4)(2)=58=3.M_{32} = \begin{vmatrix} 1 & 4 \\ 2 & 5 \end{vmatrix} = (1)(5) - (4)(2) = 5 - 8 = -3.
  3. Minor M33M_{33} (remove row 3 and column 3):

    M33=1220=(1)(0)(2)(2)=0+4=4.M_{33} = \begin{vmatrix} 1 & -2 \\ 2 & 0 \end{vmatrix} = (1)(0) - (-2)(2) = 0 + 4 = 4.

With the elements:

  • a11=1a_{11} = 1
  • a12=2a_{12} = -2
  • a13=4a_{13} = 4

Substitute the values:

Expression=1(10)+(2)(3)+4(4)=10+6+16=12.\begin{align*} \text{Expression} &= 1(-10) + (-2)(-3) + 4(4) \\ &= -10 + 6 + 16 \\ &= 12. \end{align*}

So, the value is 12.