Question
Question: If $A=\begin{bmatrix}3&1\\4&2\end{bmatrix}$ and $B_p$ is another matrix defined as. $B_p = A^P (\un...
If A=[3412] and Bp is another matrix defined as.
Bp=AP(p−timesadj(adj(adj.....(adjA)))) where p∈N, then identify the correct statement(s):

For any natural number p: • If p is even, then Bₚ = A^(p+1). • If p is odd, then Bₚ = 2·A^(p–1).
Solution
Solution:
For any invertible 2×2 matrix A we have: adj A = det A · A⁻¹.
Thus, adj A = det A · A⁻¹, adj(adj A) = det(adj A) · (adj A)⁻¹. For a 2×2 matrix, det(adj A) = det A (since for an n×n matrix, det(adj A) = (det A)^(n–1) and here n = 2). Also, since adj A = det A · A⁻¹ ⟹ (adj A)⁻¹ = A/(det A), it follows that adj(adj A) = det A · (A/(det A)) = A.
Therefore the pattern is: adj¹ A = det A · A⁻¹, adj² A = A, adj³ A = adj(adj² A) = adj A = det A · A⁻¹, adj⁴ A = A, … and so on.
Let Bₚ be defined as: Bₚ = Aᵖ · (adj (adj ( … (adj A))) with p iterations of adj.
Thus: • When p is even, the p-fold adjugate returns A. So, Bₚ = Aᵖ · A = A^(p+1).
• When p is odd, the p-fold adjugate returns (det A) · A⁻¹. So, Bₚ = Aᵖ · (det A · A⁻¹) = (det A) · A^(p–1).
Now, for the given matrix A = [ [3, 1], [4, 2] ], we compute: det A = 3×2 – 1×4 = 6 – 4 = 2.
Therefore, the answer is: • For even p: Bₚ = A^(p+1). • For odd p: Bₚ = 2 · A^(p–1).
Minimal Explanation: Using for 2×2 matrices: adj A = (det A) A⁻¹, so that adj² A = A and adj³ A = adj A. This gives: if p is even, Bₚ = Aᵖ·A = A^(p+1); if p is odd, Bₚ = Aᵖ·(det A·A⁻¹) = (det A)·A^(p–1), with det A = 2 for the given matrix.