Solveeit Logo

Question

Question: If \(a,b,c,p,q,r\) are three complex numbers such that \(\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1...

If a,b,c,p,q,ra,b,c,p,q,r are three complex numbers such that pa+qb+rc=1+i\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1 + iand ap+ bq+cr=0\frac{a}{p} + \ \frac{b}{q} + \frac{c}{r} = 0 then value of p2a2+q2b2+r2c2\frac{p^{2}}{a^{2}} + \frac{q^{2}}{b^{2}} + \frac{r^{2}}{c^{2}}is

A

0

B

-1

C

2i

D

-2i

Answer

2i

Explanation

Solution

Sol. pa+qb+rc=1+i,\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1 + i,

(pa+qb+rc)2=(1+i)2=2i\left( \frac{p}{a} + \frac{q}{b} + \frac{r}{c} \right)^{2} = (1 + i)^{2} = 2i

p2a2+q2b2+r2c2+2(qrbc+rpca+pqab)=2i\frac{p^{2}}{a^{2}} + \frac{q^{2}}{b^{2}} + \frac{r^{2}}{c^{2}} + 2\left( \frac{qr}{bc} + \frac{rp}{ca} + \frac{pq}{ab} \right) = 2i

p2a2+q2b2+r2c2+2abcpqr(ap+bq+cr)=2i\frac{p^{2}}{a^{2}} + \frac{q^{2}}{b^{2}} + \frac{r^{2}}{c^{2}} + \frac{2abc}{pqr}\left( \frac{a}{p} + \frac{b}{q} + \frac{c}{r} \right) = 2i

p2a2+q2b2+r2c2=2i\frac{p^{2}}{a^{2}} + \frac{q^{2}}{b^{2}} + \frac{r^{2}}{c^{2}} = 2i