Solveeit Logo

Question

Question: If \(ABCDEF\) is regular hexagon, then \(\overset{\rightarrow}{AD} + \overset{\rightarrow}{EB} + \ov...

If ABCDEFABCDEF is regular hexagon, then AD+EB+FC=\overset{\rightarrow}{AD} + \overset{\rightarrow}{EB} + \overset{\rightarrow}{FC} =

A

0

B

2AB2\overset{\rightarrow}{AB}

C

a.i=4,\mathbf{a}.\mathbf{i} = 4,

D

4AB4\overset{\rightarrow}{AB}

Answer

4AB4\overset{\rightarrow}{AB}

Explanation

Solution

A regular hexagon ABCDEF.

We know from the hexagon that AD\overset{\rightarrow}{AD} is parallel to BC\overset{\rightarrow}{BC} or AD=2BC\overset{\rightarrow}{AD} = 2\overset{\rightarrow}{BC}; EB\overset{\rightarrow}{EB}is parallel to FA\overset{\rightarrow}{FA} or EB=2FA\overset{\rightarrow}{EB} = 2\overset{\rightarrow}{FA}, and FC\overset{\rightarrow}{FC} is parallel to AB\overset{\rightarrow}{AB} or FC=2AB\overset{\rightarrow}{FC} = 2\overset{\rightarrow}{AB}.

Thus AD+EB+FC=2BC+2FA+2AB\overset{\rightarrow}{AD} + \overset{\rightarrow}{EB} + \overset{\rightarrow}{FC} = 2\overset{\rightarrow}{BC} + 2\overset{\rightarrow}{FA} + 2\overset{\rightarrow}{AB}

=2(FA+AB+BC)=2(FC)=2(2AB)=4AB= 2(\overset{\rightarrow}{FA} + \overset{\rightarrow}{AB} + \overset{\rightarrow}{BC}) = 2(\overset{\rightarrow}{FC}) = 2(2\overset{\rightarrow}{AB}) = 4\overset{\rightarrow}{AB}.