Solveeit Logo

Question

Mathematics Question on Vector Algebra

If ABCDEFABCDEF is a regular hexagon, then AD+EB+FC\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} is equal to

A

00

B

2AB2\overrightarrow{AB}

C

3AB3\overrightarrow{AB}

D

4AB4\overrightarrow{AB}

Answer

4AB4\overrightarrow{AB}

Explanation

Solution

ABCDEFABCDEF is a regular hexagon. We know from the hexagon that AD\overrightarrow{AD} is parallel to BC\overrightarrow{BC}. AD=2BC\Rightarrow \overrightarrow{AD} = 2 \overrightarrow{BC} Similarly, EB\overrightarrow{EB} is parallel to FA\overrightarrow{FA}. EB=2FA\Rightarrow \overrightarrow{EB} = 2 \overrightarrow{FA} and FC\overrightarrow{FC} is parallel to AB\overrightarrow{AB}. FC=2AB\Rightarrow \overrightarrow{FC} = 2 \overrightarrow{AB} Thus, AD+EB+FC=2BC+2FA+AB\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = 2 \overrightarrow{BC} + 2 \overrightarrow{FA} + \overrightarrow{AB} =2(FA+AB+BC)=2(FC)=2(2AB)=4(AB)= 2\left(\overrightarrow{FA} + \overrightarrow{AB} + \overrightarrow{BC}\right) = 2\left( \overrightarrow{FC}\right) = 2\left(2 \overrightarrow{AB}\right) = 4\left( \overrightarrow{AB}\right)