Question
Question: If ABCD is a parallelogram, \(\overset{\rightarrow}{AB} = 2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}\) ...
If ABCD is a parallelogram, AB→=2i+4j−5k and AD→=i+2j+3k, then the unit vector in the direction of BD is
A
691(i+2j−8k)
B
691(i+2j−8k)
C
691(−i−2j+8k)
D
691(−i−2j+8k)
Answer
691(−i−2j+8k)
Explanation
Solution
Since AB→+BD→=AD→⇒BD→=AD→−AB→
=(i+2j+3k)−(2i+4j−5k)=−i−2j+8k
Hence unit vector in the direction of BD→ is
∣−i−2j+8k∣−i−2j+8k=69−i−2j+8k.